Abstract:
An anti-freeze faucet contains: a first pipe, a second pipe, a check valve, and a control valve. The first pipe includes a hollow portion, an orifice, an outlet, and an inflow segment having two inlets. The second inserts into the hollow portion and includes a first connection segment, a second connection segment, and an air conduit, wherein the first connection segment has an air hole. The check valve is accommodated in the inflow segment and corresponding to the two inlets. The control valve is housed in the hollow portion and includes a base, a fitting bushing, and a coupling holder, wherein the base has two channels, and between the base and the fitting bushing is defined an accommodation chamber, the coupling holder has a rotation disc with a cold-water vent and a hot-water vent, and the coupling holder has multiple first openings and multiple second openings.
Abstract:
A method and system is disclosed for grouping the multiple stations connected to an access point (AP). The system and method comprise sending a sounding packet to a plurality of stations, wherein the stations may be all or part of the stations that are located within the range of the AP. The stations that receive the sounding packets respond to the AP, and the AP determines the channel state information (CSI) from the responses. According to the CSI, the AP divides the multiple stations into several groups. According to an embodiment of the present invention, a confirmation step is performed to each group of stations, respectively. The AP sends a second sounding packet to each group of stations, and verifies the CSI between each station group by group. Therefore, the method and system provides for monitoring the validation of each group by periodically sending sounding packets to each group.
Abstract:
A method of arranging a packet in a wireless communication system includes a preamble sequence and a data sequence. The preamble sequence includes a legacy training field (L-TF), a legacy signal field (L-SIG), a very high throughput signal field (VHT-SIG), a very high throughput short training field (VHT-STF) and at least one very high throughput long training field (VHT-LTF). The method includes generating a first VHT-SIG field and a second VHT-SIG field according to the VHT-SIG field; and arranging the L-TF field, the L-SIG field, the first VHT-SIG field, the VHT-STF field, one of the at least one VHT-LTF fields, the second VHT-SIG field and the rest of the at least one VHT-LTF fields in a predetermined sequence.
Abstract:
A method of generating preamble sequence is disclosed. A channel used by a wireless device may be divided into four sub-channels, and the method includes forming a preamble sequence of a first sub-channel, making three replicas of the preamble sequence of the first sub-channel, each replica with a phase rotation of a first angle, a second angle, and a third angle respectively, for forming each preamble sequence of a second sub-channel, a third sub-channel, and a fourth sub-channel, and arranging the preamble sequences of the first, the second, the third, and the fourth sub-channels to form a preamble sequence of the channel.
Abstract:
A method of arranging a packet in a wireless communication system includes a preamble sequence and a data sequence. The preamble sequence includes a legacy training field (L-TF), a legacy signal field (L-SIG), a very high throughput signal field (VHT-SIG), a very high throughput short training field (VHT-STF) and at least one very high throughput long training field (VHT-LTF). The method includes generating a first VHT-SIG field and a second VHT-SIG field according to the VHT-SIG field; and arranging the L-TF field, the L-SIG field, the first VHT-SIG field, the VHT-STF field, one of the at least one VHT-LTF fields, the second VHT-SIG field and the rest of the at least one VHT-LTF fields in a predetermined sequence.
Abstract:
A method for determining signal phase rotation of sub-channels within a contiguous transmission bandwidth comprises the steps of: determining a fundamental set of phase rotations; performing a cyclic shift operation for the fundamental set of phase rotations to generate a cyclic-shifted set of phase rotations; multiplying the cyclic-shifted set of phase rotations by a complex constant to generate a final set of phase rotations; and determining the phase rotation of each sub-channel within the contiguous transmission bandwidth according to the final set of phase rotations.
Abstract:
A method sub-carrier grouping for a wireless communication system including a plurality of sub-carriers is disclosed. The method includes determining a coherent bandwidth of the plurality of sub-carriers, and dividing the plurality of sub-carriers into a plurality of sub-carrier groups according to the coherent bandwidth, wherein the size of each sub-carrier group is smaller than or equal to the coherent bandwidth.
Abstract:
A method of generating a preamble sequence includes generating a first frequency-domain preamble sequence according to information of the packet, the first frequency-domain preamble sequence comprising a plurality of subsequences corresponding to a plurality of sub-channels, adjusting a phase of each subsequence of the first frequency-domain preamble sequence, for generating a second frequency-domain preamble sequence, transforming the second frequency-domain preamble sequence into a first time-domain preamble sequence, performing a cyclic shift delaying process on the first time-domain preamble sequence, for generating a plurality of delayed time-domain preamble sequences, and normalizing power of the plurality of delayed time-domain preamble sequences, for generating a second time-domain preamble sequence that is a preamble sequence of the packet.
Abstract:
A method, for determining a first amount of a plurality of high-throughput long training fields within a packet in a wireless communication system, includes determining a second amount of a plurality of space time streams needed by the wireless communication system transmitting the packet, and setting the first amount to be greater than or equal to 8 when the second amount is greater than 4.
Abstract:
A method of estimating a position of a target device for a wireless communication system includes receiving a plurality of received signal strength measurements with respect to a plurality of base stations measured by the target device when the target device enters an area, and applying a graphical model to estimate the position of the target device according to the plurality of received signal strength measurements.