Abstract:
A display apparatus is provided with a panel to display a picture thereon. The display apparatus comprises an inverter to convert DC power into AC power. The display apparatus also includes at least one lamp unit comprising a lamp body and a lamp electrode part provided in at least one of opposite ends of the lamp body to receive an electric power. A transformer is arranged adjacent to the lamp electrode part to boost up a voltage of the electric power output from the inverter to supply the electric power with the boosted voltage as a driving power to the lamp unit.
Abstract:
A receiving apparatus in an OFDM communication system, in which the receiving apparatus includes a serial-to-parallel converter that converts a serial signal received through an antenna to parallel signals. A pre-processor processes an nth symbol converted in the serial-to-parallel converter using an (n−1)th symbol and an (n+1)th symbol. A Fourier transformer Fourier-transforms the output of the pre-processor and an equalizer equalizes a Fourier-transformed signal. A deinterleaver deinterleaves an equalized signal, a decoder decodes a deinterleaved signal, and a parallel-to-serial converter converts parallel decoded signal to a signal stream.
Abstract:
Disclosed is power supply device and method having a spark prevention function. The power supply device having a spark prevention function includes output connectors to which an external device is coupled to be supplied with electric power; and an output controller for controlling a level of a voltage outputted to the output connectors depending upon whether the external device is coupled to the output connectors. Accordingly, damages to parts and malfunctions due to spark occurrences can be prevented, so an external device can be coupled to a power supply device in operation without any damage.
Abstract:
Disclosed is an inverter power module for use in the electric and electronic product, which includes: first elements constituting a power block; second elements constituting an inverter block; a mainboard on which the first elements are arranged; and a sub-board on which the second elements are arranged and mounted on the mainboard. On one portion in the front side of the main board, a sub-board mounting part for mounting the sub-board is provided. The sub-board mounting part has at least one connector and the sub-board has a pin header that corresponds to the connector. With these components, the sub-board is DIP-mounted on the mainboard. According to such construction, a plurality of the second elements having high probability of defect are included in the sub-board and mounted on the mainboard, whereby improvement in productivity and increase in yield are expected and defect generation can be minimized.
Abstract:
A mobile communication system, a transmitter includes a first transmission antenna and a second transmission antenna, and the first and second transmission antennas transmit signals through at least one odd carrier and at least one even carrier. The transmitter determines a first symbol and a second symbol to be used for initial channel estimation of a receiver, encodes the first symbol and the second symbol by a preset transmit diversity scheme for a preset time, and transmits the encoded first and second symbols to the receiver through odd carriers and even carriers of the first transmission antenna and the second transmission antenna. The receiver receives a signal for the preset period, estimates channel frequency responses of odd carriers of the first transmission antenna and channel frequency responses of even carriers of the second transmission antenna, and estimates channel frequency responses of even carriers of the first transmission antenna and channel frequency responses of odd carriers of the second transmission antenna by using the estimated channel frequency responses.
Abstract:
An inverter power module for use in an electric/electronic device includes a driving circuit board, a power transformer mounted on the driving circuit board, an inverter transformer mounted on the driving circuit board, and a blocking unit to block a magnetic flux that is generated from the inverter transformer from being emitted to the outside. With this, the magnetic flux that is generated from the inverter transformer is blocked from being emitted to the outside, thereby allowing an EMI noise, a heating problem, a noise of the system circuit, etc. to be minimized.
Abstract:
A hybrid circuit board includes a first circuit board and a second circuit boards. The first circuit board includes a first body having a slot, and a first circuit pattern formed on the first body and extended to the slot. The second circuit board includes a second body, a protruding portion, a second circuit pattern, and a separating member. The protruding portion extends from the second body. The protruding portion is inserted into the slot of the first circuit board to combine the second circuit board to the first circuit board. The second circuit pattern is formed on the second body to be extended to the protruding portion, so that the second circuit pattern is electrically connected to the first circuit pattern of the first circuit board. The separating member is disposed between the second body and the protruding portion to separate the protruding portion from the second body.
Abstract:
An inverter power module for use in an electric/electronic device includes a driving circuit board, a power transformer mounted on the driving circuit board, an inverter transformer mounted on the driving circuit board, and a blocking unit to block a magnetic flux that is generated from the inverter transformer from being emitted to the outside. With this, the magnetic flux that is generated from the inverter transformer is blocked from being emitted to the outside, thereby allowing an EMI noise, a heating problem, a noise of the system circuit, etc. to be minimized.
Abstract:
A display apparatus is provided with a panel to display a picture thereon. The display apparatus comprises an inverter to convert DC power into AC power. The display apparatus also includes at least one lamp unit comprising a lamp body and a lamp electrode part provided in at least one of opposite ends of the lamp body to receive an electric power. A transformer is arranged adjacent to the lamp electrode part to boost up a voltage of the electric power output from the inverter to supply the electric power with the boosted voltage as a driving power to the lamp unit.
Abstract:
A cold cathode fluorescent lamp (CCFL) is disclosed that provides a structure which may be driven in parallel. For this purpose, a lamp drive device comprises a plurality of CCFLs connected in parallel, a first current limiting unit connected to the plurality of CCFLs to control the magnitude of supplied power so as to discharge the CCFLs, and an inverter for changing the magnitude of supplied AC power and supplying the changed AC power to the first current limiting unit. This parallel drive CCFL structure may reduce manufacture costs of CCFL and minimize device failure rates.