Abstract:
A scroll compressor having a rotational shaft insertion hole and a fabrication method thereof are provided. The scroll compressor includes a casing; a fixed scroll fixed to an inner wall surface of the casing; an orbiting scroll combined with the fixed scroll to form a compression chamber while performing an orbiting movement with respect to the fixed scroll; a rotational shaft having a shaft portion inserted into the fixed scroll, an eccentric portion that penetrates the fixed scroll to be combined with the orbiting scroll, and a neck portion having a diameter less than a diameter of the eccentric portion to connect the eccentric portion to the shaft portion, wherein the shaft portion, the eccentric portion, and the neck portion are integrally formed; a fixed bush interposed between the fixed scroll and the shaft portion; and a driving unit configured to drive the rotational shaft. A neck portion insertion hole, into which the neck portion is inserted, and a shaft portion insertion hole, into which the shaft portion is movably inserted in a transverse direction, are formed at the fixed scroll, and the fixed bush restricts a transverse directional movement of the shaft portion to maintain a state in which an outer circumferential portion of the neck portion insertion hole is inserted into the neck portion.
Abstract:
A scroll compressor includes an oil recollecting pump for recollecting oil discharged from a shell, thus to effectively recollect oil discharged out of the compressor. A differential pressure hole is formed at a position where it communicates with compression chambers after a suction completion timing such that oil stored in an inner space of the shell can be supplied into the compression chambers using pressure difference between the high-pressure inner space of the shell and the low-pressure compression chambers, resulting in allowing oil to be smoothly supplied to a compression unit even during low-speed driving of the compressor and preventing beforehand an occurrence of a suction loss due to oil.
Abstract:
A scroll compressor is provided that may include a fixed scroll having a fixed wrap and a plurality of first key recesses, an orbiting scroll engaged with the fixed scroll to define compression chambers and having an orbiting wrap and a plurality of second key recesses, a drive having a rotation shaft coupled to the orbiting scroll such that one end portion thereof overlaps the orbiting wrap in a lateral direction, and an Oldham ring having a plurality of first and second keys coupled to the plurality of first and second key recesses, respectively. The plurality of second keys may at least temporarily protrude from the plurality of second key recesses in a radial direction during the orbiting motion. Further, the plurality of second key recesses and the plurality of second keys may be disposed to obtain maximum contact areas therebetween at a moment of start of discharging.
Abstract:
A scroll compressor is provided that may include a fixed scroll having a fixed wrap and a plurality of first key recesses, an orbiting scroll engaged with the fixed scroll to define compression chambers and having an orbiting wrap and a plurality of second key recesses, a drive having a rotation shaft coupled to the orbiting scroll such that one end portion thereof overlaps the orbiting wrap in a lateral direction, and an Oldham ring having a plurality of first and second keys coupled to the plurality of first and second key recesses, respectively. The plurality of second keys may at least temporarily protrude from the plurality of second key recesses in a radial direction during the orbiting motion. Further, the plurality of second key recesses and the plurality of second keys may be disposed to obtain maximum contact areas therebetween at a moment of start of discharging.
Abstract:
The present disclosure relates to a scroll compressor. According to the present disclosure, in a shaft penetration scroll compressor in which an eccentric portion of the rotation shaft is overlapped with a orbiting wrap of the orbiting scroll in a radial direction, when a bearing area between the orbiting scroll and the rotation shaft is A and an end plate area of the orbiting scroll is B, A/B may be formed in a range of 0.035-0.085, and thus it may be possible to obtain a sufficient volume ratio and Sommerfeld number as well as reducing the overall size of the compressor, thereby reducing a frictional loss and abrasion in the compressor.
Abstract:
A scroll compressor is provided having a rotational shaft insertion hole and a fabrication method thereof. The scroll compressor may include a casing; a fixed scroll fixed to the casing; a circulating scroll that forms a compression chamber while performing a circulating movement with respect to the fixed scroll; a rotational shaft having a shaft portion inserted into the fixed scroll, an eccentric portion that penetrates the fixed scroll to be combined with the circulating scroll, and a neck portion having a diameter less than that of the eccentric portion; a fixed bush interposed between the fixed scroll and the shaft portion; and a drive configured to drive the rotational shaft.
Abstract:
A scroll compressor is provided that may include a fixed scroll having a fixed wrap, an orbiting scroll engaged with the fixed wrap to define a compression chamber, a rotation shaft having a shaft portion eccentrically located with respect to the orbiting scroll, a pin portion located at an end of the shaft portion and having a diameter smaller than a diameter of the shaft portion, and a bearing located at an end of the pin portion, and a drive that drives the rotation shaft. The pin portion may be inserted through one of the fixed scroll or the orbiting scroll, and the orbiting scroll may be rotatably coupled to the bearing.
Abstract:
The present disclosure relates to a scroll compressor. According to the present disclosure, in a shaft penetration scroll compressor in which an eccentric portion of the rotation shaft is overlapped with a orbiting wrap of the orbiting scroll in a radial direction, a back pressure chamber formed at a rear surface of the orbiting scroll may be eccentrically formed from the circular center around a discharge port to correspond to the eccentric discharge port, thereby effectively preventing tilting of the orbiting scroll due to the eccentricity of a gas force generated while the discharge port is eccentrically formed.
Abstract:
A scroll compressor includes a fixed scroll having a fixed wrap, and an orbiting scroll having an orbiting wrap engaged with the fixed wrap to define a first compression chamber between an inner surface of the fixed wrap and an outer surface of the orbiting wrap, and to define a second compression chamber between an inner surface of the orbiting wrap and an outer surface of the fixed wrap. A rotation shaft is provided with an eccentric portion at one end thereof to drive the orbiting scroll. A protruding portion protrudes inwardly from an inner end of the fixed wrap, and contacts the orbiting wrap. A distance between a center of the eccentric portion and a tangent line at a contact point between the protruding portion and the orbiting wrap at an end of the first compression chamber is smaller than a radius of the eccentric portion.
Abstract:
A regenerator for restoring the originally encoded optical phase of a differential-phase-shift-keyed signal. In an embodiment, the regenerator simultaneously provides limiting amplification and reduces amplitude noise based on a phase-sensitive optical amplifier that combines a weak signal field of a degraded input data with a strong pump field supplied by a local oscillator in a nonlinear interferometer. The two fields interact through degenerate four-wave mixing, and optical energy is transferred from the pump to the signal and vice versa. The phase sensitive nature of the optical gain leads to amplification of a specific phase component of the signal, determined by the input pump-signal phase difference and the incident signal phase is restored to two distinct states, separated by 180° according to the original encoding. Simultaneously, gain saturation of the pump wave by the signal wave results in limiting amplification of the signal wave for removing signal amplitude noise.