Abstract:
An SRAM write assist apparatus comprises a timer unit and a voltage divider. The voltage divider unit is configured to divide a voltage potential down to a lower level. The output of the voltage divider is connected to a memory cell in a write operation. The timer unit is configured to generate a pulse having a width inversely proportional to the voltage potential applied to a memory chip. Furthermore, the timer unit controls the period in which a lower voltage from the output of the voltage divider is applied to the memory cell. Moreover, external level and timing programmable signals can be used to further adjust the voltage divider's ratio and the pulse width from the timer unit. By employing the SRAM write assist apparatus, a memory chip can perform a reliable and fast write operation.
Abstract:
A word line driver cell suitable for RAM devices such as SRAM, static random access memory devices, is provided. The word line driver cell is compatible with double pattern processing techniques and enables the formation of all word lines from a single metal layer which, in turn, enables overlying and underlying metal levels to be used for other features such as signal lines for word line decoders. A power mesh is formed using multiple metal layers and the formation of all the word lines from a single metal layer enables VDD and VSS power lines that are formed from an overlying layer to extend orthogonal to the cell direction and include wider widths reducing metal line resistance and increasing the deliverable power.
Abstract:
Provided are semiconductor device cells, methods for forming the semiconductor device cells and a layout style for the semiconductor device cells. The device cells may be repetitive cells used throughout an integrated circuit. The layout style utilizes an area at the polysilicon level that is void of polysilicon and which can accommodate conductive leads therein or thereover. The conductive leads are formed of material typically used for contacts or vias and are disposed beneath the first metal interconnect level which couples device cells to one another. The subjacent local conductive leads may form subjacent signal lines allowing for additional power mesh lines to be included within the limited number of metal tracks that can be accommodated within a device cell and in accordance with metal track design spacing rules.
Abstract:
A memory access operation on a bit cell of a digital memory, e.g., a static random access memory (SRAM), is assisted by reducing the word line control voltage for reading and boosting it for writing, thus improving data integrity. The bit cell has cross coupled inverters for storing and retrieving a logic state via bit line connections through a passing gate transistor controlled by the word line. A level of a word line signal controlling the passing gate transistor is shifted from a first voltage value to a higher second voltage value to begin a memory access cycle. The level of the word line signal is shifted from the second voltage value to a third voltage value less than the second voltage value during the access cycle. The word line signal is maintained at the third voltage value for a time interval during the access cycle.
Abstract:
The propagation delay of a signal through multiple load devices coupled sequentially along a conductor is improved by separating a subset of the load devices that is more distant from the signal source, and coupling the more distant subset to the signal through a fly-over conductor that bypasses the subset that is nearer to the signal source. The technique is applicable to subsets of bit cells in a random access memory (SRAM) coupled to a given word line, or to word line decoder gates coupled sequentially to a strobe signal, as well as other circuits wherein load devices selectable as a group can be divided into subsets by proximity to the signal source. In an SRAM layout with multiple levels, different metal deposition layers carry the conductor legs between the load devices versus the fly-over conductor bypassing the nearer subset.
Abstract:
A semiconductor device includes at least one memory cell die. The at least one memory cell die includes a data storage unit. The at least one memory cell die includes at least one read assist enabling unit electrically connected to the data storage unit. The at least one read assist enabling unit configured to lower a voltage of a word line. The memory cell die also includes at least one write assist enabling unit electrically connected to the data storage unit. The at least one write assist enabling unit configured to supply a negative voltage to at least one of a bit line or a bit line bar.
Abstract:
A memory comprises a row of bit cells, including a first plurality of bit cells and a second plurality of bit cells. A first word line segment driver is connected to the first plurality of bits cells. A second word line segment driver is connected to the second plurality of bits cells. The first and second word line segment drivers are selectively operable for activating one of the first and second pluralities of bit cells at a time to the exclusion of the other plurality of bit cells. A shared sense amplifier is coupled to at least one of the first plurality of bit cells and at least one of the second plurality of bit cells. The shared sense amplifier is configured to receive signals from whichever of the one first or second bit cell is activated by its respective word line segment driver at a given time.
Abstract:
A semiconductor device includes at least one memory cell die. The at least one memory cell die includes a data storage unit. The at least one memory cell die includes at least one read assist enabling unit electrically connected to the data storage unit. The at least one read assist enabling unit configured to lower a voltage of a word line. The memory cell die also includes at least one write assist enabling unit electrically connected to the data storage unit. The at least one write assist enabling unit configured to supply a negative voltage to at least one of a bit line or a bit line bar.
Abstract:
In a digital memory with an array of bit cells coupled to word lines and bit lines, each bit cell having cross coupled inverters isolated from bit lines by passing gate transistors until addressed, some or all of the bit cells are switchable between a sleep mode and a standby mode in response to a control signal. A bit line bias circuit controls the voltage at which the bit lines are caused to float when in the sleep mode. A pull-up transistor for each bit line BL or BLB in a complementary pair has a conductive channel coupled to a positive supply voltage and a gate coupled to the other bit line in the pair, BLB or BL, respectively. A connecting transistor also can be coupled between the bit lines of the complementary pair, bringing the floating bit lines to the supply voltage less a difference voltage ΔV.
Abstract:
A SRAM READ and WRITE assist apparatus comprises a bit line voltage tracking block, a READ assist timer, a READ assist unit, a WRITE assist unit a WRITE control unit. The bit line voltage tracking block detects a voltage on a tracking bit line coupled to a plurality of tracking memory cells. In response to the voltage drop on the tracking bit line, the READ assist timer generates a READ assist pulse. When the READ assist pulse has a logic high state, an activated word line is pulled down to a lower voltage. Such a lower voltage helps to improve the robustness of SRAM memory circuits so as to avoid READ and WRITE failures.