摘要:
A solar cell assembly comprising a plurality of elongated solar cells, each respective solar cell comprising (i) a core configured as a first electrode, (ii) a semiconductor junction circumferentially disposed on the core, (iii) a transparent conductive oxide (TCO) layer disposed on the semiconductor junction, and (iv) an elongated counter-electrode disposed lengthwise on a first side of the respective solar cell and extending outward from the TCO layer. On a second side of each cell, approximately opposite the counter-electrode, is a notch or other disruption extending through the semiconductor junction and the transparent oxide layer, thereby exposing the core of the solar cell. The solar cell assembly may further comprise conductive internal reflectors configured between a first and second elongated solar cell in the plurality of solar cells such that a portion of the solar light reflected from the respective internal reflector is reflected onto the solar cells.
摘要:
A solar cell unit comprising a cylindrical shaped solar cell and a transparent tubular casing is provided. The tubular shaped solar cell comprises a back-electrode, a semiconductor junction circumferentially disposed on the back-electrode and a transparent conductive layer disposed on the semiconductor junction. The transparent tubular casing is circumferentially sealed onto the transparent conductive layer of the cylindrical shaped solar cell. A solar cell unit comprising a cylindrical shaped solar cell, a filler layer, and a transparent tubular casing is provided. The cylindrical shaped solar cell comprises a cylindrical substrate, a back-electrode circumferentially disposed on the cylindrical substrate, a semiconductor junction circumferentially disposed on the back-electrode, and a transparent conductive layer disposed on the semiconductor junction. The filler layer is circumferentially disposed on the transparent conductive layer and the transparent tubular casing is circumferentially disposed onto the filler layer.
摘要:
Systems and materials to improve photovoltaic cell efficiency by implementing a self-cleaning function on photovoltaic cells and on albedo surfaces associated with photovoltaic cell assemblies are provided. Materials for protecting albedo surfaces that surround photovoltaic cell assemblies, thereby maximizing energy input into the photovoltaic cell assemblies, are provided. Materials for self-cleaning photovoltaic cell panels, thereby maintaining their efficiency, are provided. Portable albedo collecting devices associated with photovoltaic cell assemblies are provided.
摘要:
An apparatus for converting light energy into electric energy has a concentrator with at least a first and second wall. The walls are made at least in part of a material that reflects light. The concentrator has an opening defined by the walls, and is operable to admit light energy into an interior portion of the apparatus. An elongated photovoltaic module is disposed between the walls. The module has a substrate, and a photovoltaic covering disposed on the substrate. The module can generate electric energy from light energy that directly strikes the module and light energy redirected from the concentrator to the module. The walls are substantially the shape of an involute of the module. The walls are limited to the height of the topmost portion of the elongated photovoltaic module. The module is disposed upon or above a joining of the walls.
摘要:
A photovoltaic assembly has elongated photovoltaic modules. The photovoltaic modules each have a substrate with a photovoltaic material disposed on the substrate. Each respective photovoltaic module lies in the concave structure of a corresponding concentrator assembly. The concentrator assemblies have surfaces made with reflective material that form such concave structures. The concentrator assemblies each transmit light to their corresponding photovoltaic module. The surfaces of each concentrator assembly are shaped at least in part as an involute of the surface of their corresponding photovoltaic modules, and do not exceed the height of the their corresponding module. A frame is provided having a first support and a second support, where the modules extend between the supports. The concentrator is mechanically attached to the frame. A substantial portion of light striking the concentrator is ultimately redirected to the modules without associated tracking and/or control devices.
摘要:
A solar cell assembly comprising a plurality of elongated solar cells, each respective solar cell comprising (i) a core configured as a first electrode, (ii) a semiconductor junction circumferentially disposed on the core, (iii) a transparent conductive oxide (TCO) layer disposed on the semiconductor junction, and (iv) an elongated counter-electrode disposed lengthwise on a first side of the respective solar cell and extending outward from the TCO layer. On a second side of each cell, approximately opposite the counter-electrode, is a notch or other disruption extending through the semiconductor junction and the transparent oxide layer, thereby exposing the core of the solar cell. The solar cell assembly may further comprise conductive internal reflectors configured between a first and second elongated solar cell in the plurality of solar cells such that a portion of the solar light reflected from the respective internal reflector is reflected onto the solar cells.
摘要:
Systems and materials to improve photovoltaic cell efficiency by implementing a self-cleaning function on photovoltaic cells and on albedo surfaces associated with photovoltaic cell assemblies are provided. Materials for protecting albedo surfaces that surround photovoltaic cell assemblies, thereby maximizing energy input into the photovoltaic cell assemblies, are provided. Materials for self-cleaning photovoltaic cell panels, thereby maintaining their efficiency, are provided. Portable albedo collecting devices associated with photovoltaic cell assemblies are provided.
摘要:
A solar cell unit comprising a cylindrical shaped solar cell and a transparent tubular casing is provided. The tubular shaped solar cell comprises a back-electrode, a semiconductor junction circumferentially disposed on the back-electrode and a transparent conductive layer disposed on the semiconductor junction. The transparent tubular casing is circumferentially sealed onto the transparent conductive layer of the cylindrical shaped solar cell. A solar cell unit comprising a cylindrical shaped solar cell, a filler layer, and a transparent tubular casing is provided. The cylindrical shaped solar cell comprises a cylindrical substrate, a back-electrode circumferentially disposed on the cylindrical substrate, a semiconductor junction circumferentially disposed on the back-electrode, and a transparent conductive layer disposed on the semiconductor junction. The filler layer is circumferentially disposed on the transparent conductive layer and the transparent tubular casing is circumferentially disposed onto the filler layer.
摘要:
A solar cell unit comprising a cylindrical shaped solar cell and a transparent tubular casing is provided. The tubular shaped solar cell comprises a back-electrode, a semiconductor junction circumferentially disposed on the back-electrode and a transparent conductive layer disposed on the semiconductor junction. The transparent tubular casing is circumferentially sealed onto the transparent conductive layer of the cylindrical shaped solar cell. A solar cell unit comprising a cylindrical shaped solar cell, a filler layer, and a transparent tubular casing is provided. The cylindrical shaped solar cell comprises a cylindrical substrate, a back-electrode circumferentially disposed on the cylindrical substrate, a semiconductor junction circumferentially disposed on the back-electrode, and a transparent conductive layer disposed on the semiconductor junction. The filler layer is circumferentially disposed on the transparent conductive layer and the transparent tubular casing is circumferentially disposed onto the filler layer.
摘要:
A solar cell assembly comprising a plurality of elongated solar cells is provided. Each solar cell in the plurality of cells comprises a conductive core configured as a first electrode, a semiconductor junction circumferentially disposed on the conductive core, and a TCO layer disposed on the semiconductor junction. The plurality of solar cells is arranged in a parallel manner in pairs on a transparent insulating substrate such that (i) the solar cells in each respective pair are joined together lengthwise by a corresponding counter-electrode, and (ii) solar cells adjacent pairs of solar cells do not touch each other. Each solar cell pair is affixed to the transparent insulating substrate. A first and second solar cell pair is electrically connected in series by an electrical contact that electrically connects the first electrode of each cell in the first pair to the corresponding counter-electrode of the second pair.