Abstract:
In a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) utilizing a conventional downstream optical signal reusing method, there is an inventory problem that different optical transmitter types need to be provided for the operation, management, replacement, etc. of a system. A WDM-PON system according to the present invention, includes: a seed light (SL) unit generating a seed light whose wavelength intervals and center wavelengths are adjusted using at least one seed light source; an optical line terminal (OLT) receiving the wavelength-multiplexed seed light from the seed light unit, transmitting a downstream optical signal to a subscriber of the WDM-PON, and receiving a upstream optical signal from the subscriber; and an optical network unit (ONU) receiving the downstream optical signal from the OLT, flattening and modulating the downstream optical signal with upstream data so that the downstream optical signal is reused for carrying upstream data. It is possible to improve the quality and reliability of downstream transmission by sufficiently increasing an extinction ratio, and improve the quality and reliability of upstream transmission by sufficiently flattening an input downstream optical signal in a semiconductor optical amplifier.
Abstract:
Provided is a throw-type compact reconnaissance robot, which is used for military purposes or counter-terrorism and is capable of ensuring a long operational time as well as drop safety by efficient spatial layout of a battery. The throw-type compact reconnaissance robot includes a cylindrical body (100) with a camera (140), drivers (200) made up of two tires (270) that are disposed on opposite sides of the body (100) and is drivable individually, and battery units (300) supplying power used to operate the robot and disposed in inner spaces of the tires (270) of the drivers (200) on the opposite outermost sides of the robot.
Abstract:
In a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) utilizing a conventional downstream optical signal reusing method, there is an inventory problem that different optical transmitter types need to be provided for the operation, management, replacement, etc. of a system. A WDM-PON system according to the present invention, includes: a seed light (SL) unit generating a seed light whose wavelength intervals and center wavelengths are adjusted using at least one seed light source; an optical line terminal (OLT) receiving the wavelength-multiplexed seed light from the seed light unit, transmitting a downstream optical signal to a subscriber of the WDM-PON, and receiving a upstream optical signal from the subscriber; and an optical network unit (ONU) receiving the downstream optical signal from the OLT, flattening and modulating the downstream optical signal with upstream data so that the downstream optical signal is reused for carrying upstream data. It is possible to improve the quality and reliability of downstream transmission by sufficiently increasing an extinction ratio, and improve the quality and reliability of upstream transmission by sufficiently flattening an input downstream optical signal in a semiconductor optical amplifier.
Abstract:
Provided is a launchable remote-control attack device that enables an operator to remotely grasp the status of a target place and to remotely control weapons it has been equipped with to perform an attack using explosives or gas when necessary. The remote-control attack device includes a cylindrical body with a camera, drivers which are made up of two tires that are disposed on opposite sides of the body and can be driven individually, and battery units for supplying power and which are disposed in central openings of the tires of the drivers. The attack device further includes a plurality of storage units and a wireless control unit.
Abstract:
Provided is a launchable remote-control attack device that enables an operator to remotely grasp the status of a target place and to remotely control weapons it has been equipped with to perform an attack using explosives or gas when necessary. The remote-control attack device includes a cylindrical body with a camera, drivers which are made up of two tires that are disposed on opposite sides of the body and can be driven individually, and battery units for supplying power and which are disposed in central openings of the tires of the drivers. The attack device further includes a plurality of storage units and a wireless control unit.
Abstract:
Provided is a throw-type compact reconnaissance robot, which is used for military purposes or counter-terrorism and is capable of ensuring a long operational time as well as drop safety by efficient spatial layout of a battery. The throw-type compact reconnaissance robot includes a cylindrical body (100) with a camera (140), drivers (200) made up of two tires (270) that are disposed on opposite sides of the body (100) and is drivable individually, and battery units (300) supplying power used to operate the robot and disposed in inner spaces of the tires (270) of the drivers (200) on the opposite outermost sides of the robot.