摘要:
The present invention proposes a wavelength division multiplexing-passive optical network (WDM-PON) system which transmits downstream data to an optical network unit (ONU) as an optical line termination (OLT) receives seed light from a spectrum-sliced external light source module. One characteristic of the proposed WDM-PON system is that optical transmitters of the OLT and ONU are operated regardless of optical wavelength. Another characteristic of the proposed WDM-PON system is that a conventional TDMA-PON (E-PON or G-PON) ONU can be accommodated without a change.
摘要:
An optical backhaul network for a wireless broadband service is provided. The optical backhaul network for a wireless broadband service includes: a plurality of optical network units for outputting an uplink optical signal having a multiplexed wavelength; an optical line termination for outputting a downlink optical signal of a single mode in order to transmit the downlink optical signal to the plurality of the optical network units in a broadcasting form; and a plurality of remote nodes for outputting a part of the downlink optical signal to the plurality of the optical network units and for outputting the uplink optical signal to the optical line termination. Therefore, one center and a plurality of access points can be efficiently connected.
摘要:
In a Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) utilizing a conventional downstream optical signal reusing method, there is an inventory problem that different optical transmitter types need to be provided for the operation, management, replacement, etc. of a system. A WDM-PON system according to the present invention, includes: a seed light (SL) unit generating a seed light whose wavelength intervals and center wavelengths are adjusted using at least one seed light source; an optical line terminal (OLT) receiving the wavelength-multiplexed seed light from the seed light unit, transmitting a downstream optical signal to a subscriber of the WDM-PON, and receiving a upstream optical signal from the subscriber; and an optical network unit (ONU) receiving the downstream optical signal from the OLT, flattening and modulating the downstream optical signal with upstream data so that the downstream optical signal is reused for carrying upstream data. It is possible to improve the quality and reliability of downstream transmission by sufficiently increasing an extinction ratio, and improve the quality and reliability of upstream transmission by sufficiently flattening an input downstream optical signal in a semiconductor optical amplifier.
摘要:
A Reflective Semiconductor Optical Amplifier (RSOA) for compensating for light loss in an optical link, an RSOA module for improving polarization dependency using the RSOA, and a Passive Optical Network (PON) for increasing economical efficiency and practical use of a bandwidth using the RSOA are provided. The PON includes a central office comprising a plurality of optic sources transmitting a downstream signal and a plurality of first receivers receiving an upstream signal; at least one optical network terminal (ONT) including a second receiver receiving the downstream signal and an RSOA which receives the downstream signal, remodulates the downstream signal into the upstream signal, and transmits the upstream signal in loopback mode; and a remote node interfacing the central office with the ONT. The upstream signal and the downstream signal are transmitted between the remote node and the ONT via a single optical fiber. The remote node includes an optical power splitter at its port connected to the ONT.
摘要:
Provided is a passive optical network (PON) based on a reflective semiconductor optical amplifier (RSOA). In the PON, seed-light-injection RSOAs are used in an optical line terminal (OLT) to achieve the color-less management of the wavelengths of OLT optic sources, and wavelength reuse RSOAs are used to achieve the color-less management of the wavelengths of ONTs. Therefore, problems related to ONT wavelength management can be eliminated by the wavelength reuse RSOAs, and problems related to OLT wavelength management can be eliminated by the seed-light-injection RSOAs.
摘要:
A Reflective Semiconductor Optical Amplifier (RSOA) for compensating for light loss in an optical link, an RSOA module for improving polarization dependency using the RSOA, and a Passive Optical Network (PON) for increasing economical efficiency and practical use of a bandwidth using the RSOA are provided. The PON includes a central office comprising a plurality of optic sources transmitting a downstream signal and a plurality of first receivers receiving an upstream signal; at least one optical network terminal (ONT) including a second receiver receiving the downstream signal and an RSOA which receives the downstream signal, remodulates the downstream signal into the upstream signal, and transmits the upstream signal in loopback mode; and a remote node interfacing the central office with the ONT. The upstream signal and the downstream signal are transmitted between the remote node and the ONT via a single optical fiber. The remote node includes an optical power splitter at its port connected to the ONT.
摘要:
Provided is an Optical Line Terminal (OLT). The OLT may include a first Wavelength division multiplexer/demultiplexer (WDM MUX/DeMUX) to perform a wavelength demultiplexing on seed light received from a seed light source, and a second Wavelength division demultiplexer (WDM DeMUX) to receive, from at least one ONU/ONT, an upstream optical signal generated using the seed light having the wavelength demultiplexing performed, and to perform a wavelength multiplexing on the received upstream optical signal.
摘要:
Provided are a wavelength division multiplexing-passive optical network (WDM-PON) in which a reflective semi-conductor optical amplifier (RSOA) is used as each optical transmitter of an optical line termination (OLT) and an optical network unit (ONU) and additional spectrum-sliced light is injected into RSOAs of each of the OLT and the ONU, and a WDM-PON that is combined with time division multiple access (TDMA) technology, by which the number of included ONUs increases and conventional TDMA ONUs can be used.
摘要:
The present provides a method of dynamically managing multicast groups and allocating multicast service wavelengths for the highest channel efficiency. According to the present invention, the share indices of wavelengths of all multicast service groups, which employ broadcasting wavelengths and data wavelengths, are periodically ascertained on the basis of IGMP snooping-based technology in a WDM-PON. Based on the ascertainment results, if the channel share index of the group that employs the broadcasting wavelength is smaller than the channel share index of the group that employs the data wavelength, the share index of the wavelength of the multicast group that employs the broadcasting wavelength is maximized by dynamically changing allocation of the wavelength of the multicast group, so that a maximum multicast service can be provided within limited resources.
摘要:
A termination device for use in a WDM-SCM PON system can effectively support a multi-channel integration function of a WDM/SCM PON system. The termination device contained in a termination end of a WDM/SCM (Wavelength Division Multiplexing/Sub-Carrier Multiplexing) PON (Passive Optical Network) to connect the PON with either a subscriber or an Ethernet service network includes: an Ethernet interface module connected to the Ethernet service network or the subscriber to perform an Ethernet interface function; a WDM/SCM physical layer module physically connected to the WDM/SCM PON to transmit/receive optical signals to/from the WDM/SCM PON; and a MAC (Media Access Control)-bridge module for performing a multiplexing/demultiplexing operation based on a MAC address upon receipt of transmission/reception frames, and reconstructing preambles of the frames while being classified according to channels so that individual Ethernet frames are matching-processed while being classified according to SCM channels of the WDM/SCM physical layer module.