Abstract:
A signal-transmitting system includes a digital-to-analog converter, an optical modulator, first and second electrodes, an optical phase shifter, and an optical coupler. The digital-to-analog converter converts digital data into an electrical analog signal. The optical modulator includes a first optical waveguide configured to transmit a first optical carrier, a second optical waveguide configured to transmit a second optical carrier, a first electrode positioned on the first optical waveguide, and a second electrode positioned on the second optical waveguide. The first and second electrical couplers are configured to couple respective electrical analog signals and electrical carriers to electrodes to generate modulation waves. The modulation waves are different in phase. The optical phase shifter is configured to shift the second modulation wave by a predetermined phase, and the optical coupler is configured to couple the first and second modulation waves to generate an optical output signal.
Abstract:
The present invention relates to an adjustable optical signal delay module, particularly to a module, which adjusts power of an amplified spontaneous emission generated by a semiconductor optical amplifier and reversely feeds the adjusted amplified spontaneous emission back to the semiconductor optical amplifier to vary a group refractive index of the semiconductor optical amplifier and delay the timing of an optical signal, whereby the present invention can replace the pump laser conventionally required by a CPO mechanism. In the present invention, the feedback optical loop comprises a variable optical attenuator, an optical filter, and optical circulators. An user can control the delay timing of optical signals via adjusting optical power in the feedback optical loop. The present invention can decrease the fabrication cost of an optical signal delay module and reduce the volume thereof.
Abstract:
A method of depositing lithium phosphorus oxynitride on a substrate, the method comprising loading a substrate into a vacuum chamber having a target comprising lithium phosphate, introducing a process gas comprising nitrogen into the chamber and maintaining the gas at a pressure of less than about 15 mTorr; and forming a plasma of the process gas in the chamber to deposit lithium phosphorous oxynitride on the substrate.
Abstract:
The present invention uses an active photocatalytic reactor to process biological culturing water. The process is accelerated. Water used in a biological culturing system is stabilized with pollutant in the water reduced. The active photocatalytic reactor is less affected by outside environment while having faster activating speed. The active photocatalytic reactor can be combined with a traditional filter to form a serial or parallel connection for more effectively purifying the culturing water with damage to the whole system avoided.
Abstract:
The method of the present invention comprises the following three steps: (1) Coating titanium oxide in the form of a membrane, nanometer-sized particles or powder onto a substrate to form a preliminary coating; (2) Adding a reducing agent and a dispersing agent to a metallic precursor to form a solution and then using an application device to apply a small amount of the solution to the preliminary coating; and (3) Using ultraviolet radiation on the substrate to reduce the metallic precursor to a metal via photochemical reaction and hence to form a composite coating. The method is simple and may be used for substrates in different sizes. In addition, in the method, the solution may be evenly spread out on the preliminary coating. The final composite coating may be used as the electrodes of a proton exchange membrane fuel cell.
Abstract:
The present invention discloses a modulation device for generating an optical signal with quadruple frequency and the modulation method thereof. The modulation device in the present invention utilizes a commercial integrated modulator, a RF signal generator and a phase shifter to generate an optical signal with quadruple frequency. When the RF signal generator generates a first modulation signal, and the phase shifter shifts the first modulation signal by 90 degrees to generate a second modulation signal, the integrated modulator is biased to transmit the optical signal in maximum value and to modulate the first and second modulation signal so as to generate a output optical signal with quadruple frequency.
Abstract:
The present invention relates to a technique for tuning the transmission time of optical signal, which adopts an optical amplifier with a bending structure for enhancing the tunable time of optical signal. The effect of tunable time of optical signal can be achieved by adjusting the gain of the optical amplifier.
Abstract:
A frequency up-conversion system includes an optical splitter, an optical modulator, an optical phase-shifter, and an optical coupler. In one embodiment of the present disclosure, the optical splitter is configured to split an optical wave into a first optical wave and a second optical wave, the optical modulator is configured to modulate the first optical wave to form a modulation wave, the optical phase-shifter is configured to shift the phase of the second optical wave by a predetermined phase to form a shifting wave, and the optical coupler is configured to couple the modulation wave and the shifting wave. In one embodiment of the present disclosure, the optical modulator and the optical phase-shifter are connected in a parallel manner.
Abstract:
A signal-transmitting system includes a digital-to-analog converter, an optical modulator, first and second electrodes, an optical phase shifter, and an optical coupler. The digital-to-analog converter converts digital data into an electrical analog signal. The optical modulator includes a first optical waveguide configured to transmit a first optical carrier, a second optical waveguide configured to transmit a second optical carrier, a first electrode positioned on the first optical waveguide, and a second electrode positioned on the second optical waveguide. The first and second electrical couplers are configured to couple respective electrical analog signals and electrical carriers to electrodes to generate modulation waves. The modulation waves are different in phase. The optical phase shifter is configured to shift the second modulation wave by a predetermined phase, and the optical coupler is configured to couple the first and second modulation waves to generate an optical output signal.
Abstract:
The present invention discloses an optical modulation device, which comprises an electric signal generator generating an electric signal carrying a data signal; a first sinusoidal signal generator generating a first sinusoidal signal; an optical signal generator generating an input source optical signal; and an optoelectronic modulator(Mach-Zehnder modulator) receiving the input source optical signal, the electric signal and the first sinusoidal signal, biased to modify a transmission performance of the input source optical signal, modulating the input source optical signal with the electric signal and the first sinusoidal signal, and then sending out an output source optical signal carrying the electric signal and the first sinusoidal signal. The present invention realizes frequency multiplication, enables an optical signal to carry vector signals, and promotes the efficiency of broadband systems.