Abstract:
A programmable memory built-in self-test circuit and a clock switching circuit thereof are provided. The memory built-in self-test circuit is able to provide more self-test functions preset by a user, simplify the redundant circuit in the prior art and reduce chip area and lower the cost by means of an instruction decoder and a built-in self-test controller. The present invention also provides some peripheral control circuits of a memory. The control circuits occupies less area and enables the memory to be tested more flexibly. The present invention further provides a clock switching circuit enabling a chip to be correctly tested under different clock speeds, which benefits to advance the testability and the analyzability of the memory embedded in a chip and thereby increase fault coverage.
Abstract:
An instruction-based programmable memory built-in self test (P-MBIST) circuit and an address generator thereof are provided. The P-MBIST circuit generates control signals according to the decoding of compact test instructions provided by an external automatic test equipment (ATE). The address generator generates memory addresses according to the control signals. The control signals and the memory addresses are sent to an embedded memory to perform the MBIST. The algorithm-specific design of the P-MBIST circuit and the address generator enables them to support multiple test algorithms at full clock speed and occupy smaller chip area.
Abstract:
A data weighted average (DWA) structure including a first delay unit, a binary to thermometer code converter, an adder, a second delay unit, a decoder, a barrel shifter, and a plurality of signal lines is provided. The first delay unit delays an input digital signal. The binary to thermometer code converter converts an output signal of the first delay unit into a thermal code. The second delay unit delays an output signal of the adder. The adder adds the input digital signal to an output signal of the second delay unit. The decoder decodes the output signal of the second delay unit. The barrel shifter generates an output signal from the thermal code in accordance with an output signal of the decoder. The signal lines route the output signal of the barrel shifter into two independent control signal groups.
Abstract:
A data weighted average (DWA) structure including a first delay unit, a binary to thermometer code converter, an adder, a second delay unit, a decoder, a barrel shifter, and a plurality of signal lines is provided. The first delay unit delays an input digital signal. The binary to thermometer code converter converts an output signal of the first delay unit into a thermal code. The second delay unit delays an output signal of the adder. The adder adds the input digital signal to an output signal of the second delay unit. The decoder decodes the output signal of the second delay unit. The barrel shifter generates an output signal from the thermal code in accordance with an output signal of the decoder. The signal lines route the output signal of the barrel shifter into two independent control signal groups.
Abstract:
A programmable memory built-in self-test circuit and a clock switching circuit thereof are provided. The memory built-in self-test circuit is able to provide more self-test functions preset by a user, simplify the redundant circuit in the prior art and reduce chip area and lower the cost by means of an instruction decoder and a built-in self-test controller. The present invention also provides some peripheral control circuits of a memory. The control circuits occupies less area and enables the memory to be tested more flexibly. The present invention further provides a clock switching circuit enabling a chip to be correctly tested under different clock speeds, which benefits to advance the testability and the analyzability of the memory embedded in a chip and thereby increase fault coverage.
Abstract:
A signal routing method adapted to a DWA structure is provided. The signal routing method at least includes following steps. An M-bit input digital signal is provided. The odd bit in the input digital signal is routed into a low-bit signal of an output digital signal, and the even bit in the input digital signal is routed into a high-bit signal of the output digital signal, wherein the output digital signal has M bits.