Abstract:
A programmable memory built-in self-test circuit and a clock switching circuit thereof are provided. The memory built-in self-test circuit is able to provide more self-test functions preset by a user, simplify the redundant circuit in the prior art and reduce chip area and lower the cost by means of an instruction decoder and a built-in self-test controller. The present invention also provides some peripheral control circuits of a memory. The control circuits occupies less area and enables the memory to be tested more flexibly. The present invention further provides a clock switching circuit enabling a chip to be correctly tested under different clock speeds, which benefits to advance the testability and the analyzability of the memory embedded in a chip and thereby increase fault coverage.
Abstract:
A programmable memory built-in self-test circuit and a clock switching circuit thereof are provided. The memory built-in self-test circuit is able to provide more self-test functions preset by a user, simplify the redundant circuit in the prior art and reduce chip area and lower the cost by means of an instruction decoder and a built-in self-test controller. The present invention also provides some peripheral control circuits of a memory. The control circuits occupies less area and enables the memory to be tested more flexibly. The present invention further provides a clock switching circuit enabling a chip to be correctly tested under different clock speeds, which benefits to advance the testability and the analyzability of the memory embedded in a chip and thereby increase fault coverage.
Abstract:
An instruction-based programmable memory built-in self test (P-MBIST) circuit and an address generator thereof are provided. The P-MBIST circuit generates control signals according to the decoding of compact test instructions provided by an external automatic test equipment (ATE). The address generator generates memory addresses according to the control signals. The control signals and the memory addresses are sent to an embedded memory to perform the MBIST. The algorithm-specific design of the P-MBIST circuit and the address generator enables them to support multiple test algorithms at full clock speed and occupy smaller chip area.
Abstract:
Provided is a measurement circuit for measuring a jitter of a clock signal. Delay elements delay the clock signal into delayed clock signal. Latches latch the delayed clock signals to indicate whether transition edges of the clock signal is within a window value which is corresponding to delays of the delay elements. Based on the latch result from the latches, a finite state machine generates control signals for controlling the delay elements. If the latch result indicates that the transition edges of the clock signal is not within the window value, the control signals adjust the delays of the delay elements and the window value. The jitter of the clock signal is measured based on the delays of the delay elements and the window value.
Abstract:
A jitter measurement circuit and a method for calibrating the jitter measurement circuit are disclosed. The jitter measurement circuit includes a synchronous dual-phase detector and a decision circuit. In a test mode, a probability distribution function (PDF) of the jitter of a clock signal output by a circuit under test is obtained. In a calibration mode, a random clock, which is externally generated or generated by a free-run oscillator in the circuit under test, is used to calibrate the synchronous dual-phase detector. The decision circuit performs logic operations, data latching and counting on a phase relationship detected by the synchronous dual-phase detector in order to obtain a counting value and a PDF relative to the jitter of the clock signal.
Abstract:
We propose an opposite-phase scheme for peak current reduction. The basic idea is to divide the clock buffers at each level of the clock tree into two sets: one half of the clock buffers operate at the same phase as the clock source, and the other half of the clock buffers operate at the opposite phase to the clock source. Consequently, our approach can effectively reduce the peak current of the clock tree. The method enables the opposite-phase scheme to combine with the electronic design automation (EDA) tools that are commonly used in modern industries.
Abstract:
A built-in memory current test circuit to test a memory on a chip is disclosed, comprising a built-in self-test circuit and a dynamic current generation module. The built-in self-test circuit is disposed on the chip to receive and process a test signal and generate a control signal to control operation of the memory and a current control code. The dynamic current generation module, also disposed on the chip, produces a test current into the memory based on the current control code. The current switch time is reduced in the built-in memory current test circuit, and an integrated test combining functional and stress tests can thus be performed.
Abstract:
A wrapper testing circuit and method thereof for System-On-a-Chip is provided for electrical tests of core circuits of an integrated circuit. The testing circuit includes a decoding logic with an encoding table for receiving test signals and delivering control signals in response to the test signals according to the table; a plurality of registers for saving the control signals temporarily and delivering the control signals to the core circuits; a bypass circuit for delivering the test signals; and an instruction register for saving the test signals temporarily and refreshing the data in the registers and the bypass circuits after the decoding logic issues the control signals. The encoding of the control signals is completed in one period. Compared with the serial encoding in the prior art, test time is reduced.
Abstract:
IC with built-in self-test and design method thereof. The IC comprises an SD-ADC and a Dft circuit. The Dft circuit uses a digital stimulus signal to solve the deadlock problem of the on-chip analog testing and avoid thermal noise. Moreover, according to the design method of the IC, circuits having different specification can use the Dft circuit without performance degradation for original SD-ADC.
Abstract:
A semiconductor package structure includes a package substrate, at least a chip, solder balls, a light emitting/receiving device, a optical intermediary device and an optical transmission device. The package substrate has a first surface, a second surface, a circuit and solder ball pads, wherein each solder ball pad is electrically connected to the circuit. The chip is disposed on the first surface and electrically connected to the circuit. The solder balls are respectively disposed on the solder ball pads. The light emitting/receiving device is disposed on the package substrate and electrically connected to the circuit. The optical intermediary device is disposed above the light emitting/receiving device. The optical transmission device is inserted in the optical intermediary device, wherein a light emitting by the light emitting/receiving device is emitted to the optical transmission device via the optical intermediary device so that an optical signal is transmitted through the optical transmission device.