摘要:
In an embodiment a translation of RID (requester identifier) ranges to identifiers of north chips is stored into a south chip. A command that comprises a command RID is received at the south chip from a device. In response, a RID range is determined that encompasses the command RID, and a north chip identifier is found that is assigned a virtual function identified by the command RID. The command is sent from the south chip to the north chip identified by the north chip identifier. The translation comprises a RID compare value and a RID mask. A determination is made that the RID range encompasses the command RID by performing a logical-and operation on the command RID and the RID mask and comparing a result of the logical-and operation to the RID compare value.
摘要:
In an embodiment, a translation of a hierarchical MMIO address range to a physical MMIO address range and an identifier of a bridge in a south chip are written to a north chip. A transaction is received that comprises a hierarchical MMIO address. The hierarchical MMIO address that is within the hierarchical MMIO address range is replaced in the transaction with the identifier of the bridge and with a physical MMIO address that is within the physical MMIO address range in the south chip. The transaction is sent to the device that is connected to the bridge in the south chip. The physical MMIO address range specifies a range of physical MMIO addresses in memory in the device.
摘要:
In an embodiment a translation of RID (requester identifier) ranges to identifiers of north chips is stored into a south chip. A command that comprises a command RID is received at the south chip from a device. In response, a RID range is determined that encompasses the command RID, and a north chip identifier is found that is assigned a virtual function identified by the command RID. The command is sent from the south chip to the north chip identified by the north chip identifier. The translation comprises a RID compare value and a RID mask. A determination is made that the RID range encompasses the command RID by performing a logical-and operation on the command RID and the RID mask and comparing a result of the logical-and operation to the RID compare value.
摘要:
A method, computer system, and PCI Express device/protocol for enabling high performance IO data transfers for multiple, different IO configurations, which include variable packet sizes and/or variable/different numbers of transactions on the IO link. PCI Express protocol is enhanced to support utilization of counters and dynamically variable queue sizes. In addition to the standard queue entries, several (or a selected number of) dynamically changeable queue entries are provided/reserved and a dynamic queue modification (DQM) utility is provided within the enhanced PCI Express protocol to monitor ongoing, current data transfer and manage when the size(s) of the queue entries are modified (increased or decreased) based on current data traffic transmitting on the PCI Express IO link. The enhanced PCI Express protocol provides an equilibrium point at which many large data packets are transferred efficiently, while imposing a limit on the number of each size of packets outstanding.
摘要:
Each PCIe device may include a media access control (MAC) interface and a physical (PHY) interface that support a plurality of different lane configurations. These interfaces may include hardware modules that support 1×32, 2×16, 4×8, 8×4, 16×2, and 32×1 communication. Instead of physically connecting each of the hardware modules in the MAC interface to respective hardware modules in the PHY interface using dedicated traces, the device may include two bus controllers that arbitrate which hardware modules are connected to a internal bus coupling the two interfaces. When a different lane configuration is desired, the bus controller couples the corresponding hardware module to the internal bus. In this manner, the different lane configurations share the same lanes (and wires) of the bus as the other lane configurations. Accordingly, the shared bus only needs to include enough lanes (and wires) necessary to accommodate the widest lane configuration.
摘要:
Each PCIe device may include a media access control (MAC) interface and a physical (PHY) interface that support a plurality of different lane configurations. These interfaces may include hardware modules that support 1×32, 2×16, 4×8, 8×4, 16×2, and 32×1 communication. Instead of physically connecting each of the hardware modules in the MAC interface to respective hardware modules in the PHY interface using dedicated traces, the device may include two bus controllers that arbitrate which hardware modules are connected to a internal bus coupling the two interfaces. When a different lane configuration is desired, the bus controller couples the corresponding hardware module to the internal bus. In this manner, the different lane configurations share the same lanes (and wires) of the bus as the other lane configurations. Accordingly, the shared bus only needs to include enough lanes (and wires) necessary to accommodate the widest lane configuration.
摘要:
A computer program product for implementing a method within a data processing system and a PCI Express protocol for enabling high performance IO data transfers for multiple, different IO configurations, which include variable packet sizes and/or variable/different numbers of transactions on the IO link. PCI Express protocol is enhanced to support utilization of counters and dynamically variable queue sizes. In addition to the standard queue entries, several (or a selected number of) dynamically changeable queue entries are provided/reserved and a dynamic queue modification (DQM) utility is provided within the enhanced PCI Express protocol to monitor ongoing, current data transfer and manage when the size(s) of the queue entries are modified (increased or decreased) based on current data traffic transmitting on the PCI Express IO link. The enhanced PCI Express protocol provides an equilibrium point at which many large data packets are transferred efficiently, while imposing a limit on the number of each size of packets outstanding.
摘要:
The standard hot-plug controller (SHPC) specification may be used to generate PCI messages in a distributed switch to disconnect and/or connect virtual hierarchies of an endpoint from hosts that are connected based on multi-root input/output virtualization (MR-IOV). A management controller may instruct a SHPC to generate a PCI packet that specifies a particular virtual hierarchy to disconnect from a particular host. An upstream port connected to the host and the SHPC receives the PCI packet and uses a header that identifies the virtual endpoint in the packet to index into a routing table to identify a downstream port in the distributed switch that is connected to the endpoint. Once the PCI packet traverses the switch and arrives at the downstream port, the downstream port changes routing logic which logically disconnects the host from the specified virtual hierarchy.
摘要:
Method, circuit, and system for performing an operation for regulating bandwidth, the operation comprising receiving at a memory, debug data packets and functional data packets for transmittal on a shared bus. The operation then transmits, via the shared bus, the functional data packets and one or more of the debug data packets according to a predefined ratio of debug data packets to functional data packets. The operation then drops one or more of the received debug data packets at the memory, and maintains a count of the one or more dropped debug data packets. The operation then updates the predefined ratio based on the count, and uses the updated predefined ratio to transmit the functional data packets and one or more of the debug data packets.
摘要:
Method, circuit, and system for performing an operation for regulating bandwidth, the operation comprising receiving at a memory, debug data packets and functional data packets for transmittal on a shared bus. The operation then transmits, via the shared bus, the functional data packets and one or more of the debug data packets according to a predefined ratio of debug data packets to functional data packets. The operation then drops one or more of the received debug data packets at the memory, and maintains a count of the one or more dropped debug data packets. The operation then updates the predefined ratio based on the count, and uses the updated predefined ratio to transmit the functional data packets and one or more of the debug data packets.