摘要:
The present invention is directed to improvements in storage and delivery systems that allow for rapid fill and delivery of gases reversibly stored in a nonvolatile liquid medium, improvements in delivery and purity of the delivered gas. The low pressure storage and delivery system for gas which comprises: a container having an interior portion containing a reactive Lewis basic or Lewis acidic reactive liquid medium that is reversibly reacted with a gas having opposing Lewis acidity or basicity; a system for transferring energy into or out of the reactive liquid medium; or, a product gas purifier (e.g. a gas/liquid separator); or both.
摘要:
A mixture and method for the storage and delivery of at least one gas are disclosed herein. In one aspect, there is provided a mixture for the storage and delivery of at least one gas comprising: an ionic liquid comprising an anion and a cation; and at least one gas that is disposed within and is reversibly chemically reacted with the ionic liquid. In another aspect, there is provided a method for delivering at least one gas from a mixture comprising an ionic liquid and at least one gas comprising: reacting the at least one gas and the ionic liquid to provide the mixture and separating the at least one gas from the mixture wherein the at least one gas after the separating step is substantially the same as the at least one gas prior to the reacting step.
摘要:
This invention relates to an improvement in a low-pressure storage and delivery system for gases having Lewis acidity, particularly hazardous specialty gases such as BF3 and diborane, which are utilized in the electronics industry. The improvement resides in storing the gases in a liquid incorporating a reactive compound having Lewis basicity capable of effecting a reversible reaction between a gas having Lewis acidity. The reactive compound comprises a reactive species that is dissolved, suspended, dispersed, or otherwise mixed with a nonvolatile liquid.
摘要:
The invention relates to an improvement in apparatus and process for effecting storage and delivery of a gas. The storage and delivery apparatus is comprised of a storage and dispensing vessel containing a medium capable of storing a gas and permitting delivery of the gas stored in the medium from the vessel, the improvement comprising: (a) a reactive liquid having Lewis acidity or basicity; (b) a gas liquid complex in a reversible reacted state formed under conditions of pressure and temperature by contacting the gas having Lewis acidity with the reactive liquid having Lewis basicity or the gas having Lewis basicity with the reactive liquid having Lewis acidity; (c) a non-reactive wick medium holding and dispersing the reactive liquid and the gas liquid complex therein.
摘要:
The present invention discloses plasma enhanced chemical vapor deposition (PECVD) process for depositing n-type and p-type zinc oxide-based transparent conducting oxides (TCOs) at low temperatures with excellent optical and electrical properties on glass and temperature sensitive materials such as plastics and polymers. Specifically, it discloses PECVD process for depositing n-type ZnO by doping it with B or F and p-type ZnO by doping it with nitrogen excellent optical and electrical properties on glass and temperature sensitive materials such as plastics and polymers for TCO application. The process utilizes a mixture of volatile zinc compound, argon and/or helium as a diluent gas, carbon dioxide as an oxidant, and a dopant or reactant to deposit the desired ZnO-based TCOs.
摘要:
A mixture and method for the storage and delivery of a gas are disclosed herein. In one aspect, there is provided a mixture comprising: an ionic liquid comprising an anion and a cation, at least a portion of the gas that is disposed within and reversibly chemically reacted with the ionic liquid, and optionally an unreacted gas. In another aspect, there is provided a method for delivering a gas from a mixture comprising an ionic liquid and one or more gases comprising: reacting at least a portion of the gas with the ionic liquid to provide the mixture comprising a chemically reacted gas and an ionic liquid and separating the chemically reacted gas from the mixture wherein the chemically reacted gas after the separating step has substantially the same chemical identity as the chemically reacted gas prior to the reacting step.