摘要:
The present invention provides a hydrophobic surface coating and a preparation method therefor. The hydrophobic surface coating uses one or more fluorinated alcohol compounds as a reaction gas material, and is formed on a surface of a base body by a plasma-enhanced chemical vapor deposition method, to improve the hydrophobicity, the chemical resistance, and the weatherability of the surface of the base body.
摘要:
Disclosed herein are methods for forming a graphene film on a substrate, the methods comprising depositing graphene on a surface of the substrate by a first vapor deposition step to form a discontinuous graphene crystal layer; depositing a graphene oxide layer on the discontinuous graphene crystal layer to form a composite layer; and depositing graphene on the composite layer by a second vapor deposition step, wherein the graphene oxide layer is substantially reduced to a graphene layer during the second vapor deposition step. Transparent coated substrates comprising such graphene films are also disclosed herein, wherein the graphene films have a resistance of less than about 10 KΩ/sq.
摘要:
A super-hydrophobic film layer, a preparation method thereof, and a product thereof are provided, the preparation method includes using a siloxane monomer as a reaction material to form a super-hydrophobic film layer on a surface of a substrate by a plasma enhanced chemical vapor deposition.
摘要:
The invention relates to a glass substrate including a stack of coating layers having control properties, in which stack comprises at least one niobium metal layer located between a layer of a dielectric material selected from Si3N4 or TiOx and a layer of a protective metal material selected from TIN or Ni—Cr, conferring solar control and heat resistance properties on the glass substrate.
摘要:
Certain example embodiments of this invention relate to insulating glass (IG) units including three substantially parallel spaced apart glass substrates, wherein at least two of the surfaces include low-emissivity (low-E) coatings and at least some of the non-low E coated surfaces have antireflective (AR) coatings disposed thereon. In certain example embodiments, low-E coatings are provided on the second and fifth surfaces of the IG unit, and each internal surface of the IG unit that does not support a low-E coating does support an AR coating. Additional AR coatings may be provided on one or both of the outermost surfaces in certain example embodiments. In some cases, the center substrate need not be heat treated because of the reduced absorption enabled by providing the low-E coatings on the two outermost substrates, as well as the reduced heat accumulation in the center lite itself and in the two adjacent spacers.
摘要:
Low-emissivity coatings that are highly reflective to infrared-radiation. The coating includes three infrared-reflection film regions, which may each include silver.
摘要:
The present invention relates to a glass having a surface with improved water-repellency or hydrophobicity and low reflectance, and a fabrication method thereof. A technology is employed, in which a thin film containing silicon or silicon oxide is formed on the glass surface, the nano-structures are formed by selective etching treatment using a reactive gas such as CF4 or the like to provide superhydrophobicity and low reflectance properties, and a material with low surface energy is coated onto the nano-structures. The fabrication method of the low-reflective and superhydrophobic or super water-repellent glass may execute deposition and etching processes for the glass having the superhydrophobicity and the low reflectance, and provide excellent superhydrophobicity and low reflectance to the surface of the glass which was difficult to be treated. Also, the method is sustainable due to non-use of a toxic etching solution during these processes. The superhydrophobic and low-reflective glass can be applied to various fields, such as high-tech smart devices, vehicles, home appliances and so forth.
摘要:
A method of forming a thin film poly silicon layer includes following steps. Firstly, a substrate is provided. A heating treatment is then performed. A thin film poly silicon layer is then directly formed on a first surface of the substrate by a silicon thin film deposition process. A method of forming a thin film transistor includes following steps. Firstly, a substrate is provided. A heating treatment is then performed. A thin film poly silicon layer is then directly formed on a first surface of the substrate by a silicon thin film deposition process. A first patterning process is performed on the thin film poly silicon layer to form a semiconductor pattern. Subsequently, a gate insulation layer, a gate electrode, a source electrode and a drain electrode are formed.
摘要:
An optical switch includes a microresonator comprising a silicon-rich silicon oxide layer and a plurality of silicon nanoparticles within the silicon-rich silicon oxide layer. The microresonator further includes an optical coupler optically coupled to the microresonator and configured to be optically coupled to a signal source. The microresonator is configured to receive signal light having a signal wavelength, and at least a portion of the microresonator is responsive to the signal light by undergoing a refractive index change at the signal wavelength. The optical switch further includes an optical coupler optically coupled to the microresonator and configured to be optically coupled to a signal source. The optical coupler transmits the signal light from the signal source to the microresonator.