Abstract:
A portable DVD player includes a generally thin prismatic enclosure having a first major surface, a second major surface separated from the first major surface, and side surfaces connecting the first major surface to the second major surface. At least a portion of the first major surface includes a video display. The enclosure further includes a DVD entry port such that a DVD can be inserted into the enclosure. A digital processing system within the enclosure includes a decoder, a deinterlacer, and a display controller. The decoder receives signals from a DVD inserted into the enclosure to provide a decoded, interlaced video signal, the deinterlacer converts the interlaced video signal to a deinterlaced video signal, and the display controller uses the deinterlaced video signal to provide progressively scanned video on the video display. Preferably, the portable DVD player is both mechanically and electronically isolated for physical shocks to the player.
Abstract:
A process for sintering silicon carbide is provided which includes the steps of providing a silicon carbide powder of silicon carbide granules; purifying the silicon carbide powder; subjecting the purified silicon carbide powder to a gel-casting process; removing the gel-cast part from the mold; drying the gel-cast part; obtaining a dried cast ceramic part (a green body) which is capable of green machining into a final desired shape; firing the green body in an oven at temperatures ranging from about 100° C. to about 1900° C. to remove or burn out any polymer remaining in the ceramic; and sintering the green body at temperatures ranging from about 1600° C. to less than about 2200° C.
Abstract:
A process for sintering silicon carbide is provided which includes the steps of providing a silicon carbide powder of silicon carbide granules; purifying the silicon carbide powder; subjecting the purified silicon carbide powder to a gel-casting process; removing the gel-cast part from the mold; drying the gel-cast part; obtaining a dried cast ceramic part (a green body) which is capable of green machining into a final desired shape; firing the green body in an oven at temperatures ranging from about 100° C. to about 1900° C. to remove or burn out any polymer remaining in the ceramic; and sintering the green body at temperatures ranging from about 1600° C. to less than about 2200° C.
Abstract:
A technique for detecting original scan lines is disclosed. The technique involves receiving a deinterlaced signal with even scan lines and odd scan lines. After the deinterlaced signal is received, a determination is made as to whether the even scan lines or the odd scan lines are the original scan lines. In certain embodiments, an interlaced signal can be generated from the original scan lines. In other embodiments, an optimized deinterlaced signal can be generated using the original scan lines.
Abstract:
A process for sintering silicon carbide is provided which includes the steps of providing a silicon carbide powder of silicon carbide granules; purifying the silicon carbide powder; subjecting the purified silicon carbide powder to a gel-casting process; removing the gel-cast part from the mold; drying the gel-cast part; obtaining a dried cast ceramic part (a green body) which is capable of green machining into a final desired shape; firing the green body in an oven at temperatures ranging from about 100° C. to about 1900° C. to remove or burn out any polymer remaining in the ceramic; and sintering the green body at temperatures ranging from about 1600° C. to less than about 2200° C.
Abstract:
A method is described for deinterlacing an interlaced video stream. The method includes detecting an occurrence of groups of adjacent fields that are derived from a common original image frame source, and merging field pairs of the interlaced video stream to create a non-interlaced video stream output.
Abstract:
Systems and techniques for promotion of financial services to consumers are described. In one aspect, a system comprises a database of provider information including identification of affiliated providers, the services offered by the providers and categories of customers served by the providers and incentives offered by the providers, as well as an incentive information database including identification of incentives offered in exchange for selecting affiliated providers, levels of incentives offered and qualification requirements for each incentive and incentive level. The system further includes a user registration module allowing registration of a consumer in order to allow selection of providers, the user registration module storing user information and preferences for delivery to affiliated providers for use in conducting transactions and a selection module for coordinating selection by a consumer of affiliated providers and managing qualification for and delivery of incentives offered for selecting affiliated providers.
Abstract:
A method and system for establishing intensity levels for sub-pixels of a display device with overlapping logical pixels. The dithering system combines frame rate control techniques with contributions from overlapping pixels to establish the intensity level of each sub-pixel. The dithering system initially provides an assignment of frame numbers to each sub-pixel. The dithering system then receives a logical pixel color that includes an intensity value for each component color (e.g., red, green, and blue) for each logical pixel. The dithering system maps each component intensity value of each logical pixel to an intensity value with a low depth plus a remainder. The dithering system generates a sub-pixel intensity value for each sub-pixel of each logical pixel using frame rate control to adjust the intensity value of each sub-pixel based on the remainder and current frame number. The dithering system then calculates the intensity value for a sub-pixel by combining all the generated sub-pixel intensity values for that sub-pixel.
Abstract:
A process for sintering silicon carbide is provided which includes the steps of providing a silicon carbide powder of silicon carbide granules; purifying the silicon carbide powder; subjecting the purified silicon carbide powder to a gel-casting process; removing the gel-cast part from the mold; drying the gel-cast part; obtaining a dried cast ceramic part (a green body) which is capable of green machining into a final desired shape; firing the green body in an oven at temperatures ranging from about 100° C. to about 1900° C. to remove or burn out any polymer remaining in the ceramic; and sintering the green body at temperatures ranging from about 1600° C. to less than about 2200° C.
Abstract:
A method for removing MPEG-2 chroma upconversion artifacts in a video stream includes detecting a presence of artifacts in an incorrectly upsampled MPEG-2 video stream and removing the presence of artifacts resulting in an artifact free video stream.