摘要:
The present invention relates to a method of producing hydrogen of very high purity from a feed predominantly containing said hydrogen and a minor part of impurities mainly consisting of carbon dioxide, carbon monoxide, methane and heavier hydrocarbons. The purification method by hydrogen adsorption using a desorption stage at a lower pressure than the pressure of the feed, such as a PSA method for example, allows to produce the desorption stream and notably to recover the carbon dioxide under pressure and high-purity hydrogen, with a high yield. These performances are obtained by combining the successive stages of the method according to the invention with the use of a new family of adsorbent whose dynamic capacity at a high desorption pressure is greater than that of conventional adsorbents.
摘要:
Process for separating paraxylene with a purity that is at least equal to 99.5% by weight from an aromatic feedstock F in a single adsorption stage in a simulated moving bed (SMB), comprising different numbers of beds, allocated to a zone 1 between the supply of the desorbent D and the draw-off of the extract E; a zone 2 between the draw-off of the extract E and the supply of the feedstock F; a zone 3 between the supply of the feedstock and the draw-off of the raffinate R; a zone 4 between the draw-off of the raffinate R and the supply of the desorbent D, wherein an SMB of 12 adsorbent beds has bed configuration (2, 5, 3, 2), an SMB of 15 adsorbent beds has bed configuration (3, 6, 4 , 2), or an SMB of 19 adsorbent beds has bed configuration (4, 7, 6, 2), wherein the desorbent in this latter case is paradiethylbenzene.
摘要:
Process for separation of metaxylene, with at least 99% by weight of purity of an aromatic feedstock F, in a single adsorption stage in a simulated moving bed in an SMB device that comprises 12, 13 or 15 adsorbent beds with different numbers of beds being employed in zone 1 between the supply of the desorbent D and the draw-off of the extract E; zone 2 between the draw-off of the extract E and the supply of the feedstock F; zone 3 between the supply of the feedstock and the draw-off of the raffinate R; and zone 4 between the draw-off of the raffinate R and the supply of the desorbent D whereby the process is carried out according to a configuration of zones (a, b, c, d), whereby a, b, c, and d represent the number of adsorbent beds that operate respectively in zones 1, 2, 3, 4 in which there is used: Either an SMB of 12 adsorbent beds operating according to the configuration (2, 5, 3, 2), Or an SMB of 13 adsorbent beds operating according to the configuration (2, 5, 4, 2), Or an SMB of 15 adsorbent beds operating according to the configuration (2, 6, 4, 3).
摘要:
The present invention relates to a method of producing hydrogen of very high purity from a feed predominantly containing said hydrogen and a minor part of impurities mainly consisting of carbon dioxide, carbon monoxide, methane and heavier hydrocarbons.The purification method by hydrogen adsorption using a desorption stage at a lower pressure than the pressure of the feed, such as a PSA method for example, allows to produce the desorption stream and notably to recover the carbon dioxide under pressure and high-purity hydrogen, with a high yield.These performances are obtained by combining the successive stages of the method according to the invention with the use of a new family of adsorbent whose dynamic capacity at a high desorption pressure is greater than that of conventional adsorbents.
摘要:
Process for separation of metaxylene, with at least 99% by weight of purity of an aromatic feedstock F, in a single adsorption stage in a simulated moving bed in an SMB device that comprises 12, 13 or 15 adsorbent beds with different numbers of beds being employed in zone 1 between the supply of the desorbent D and the draw-off of the extract E; zone 2 between the draw-off of the extract E and the supply of the feedstock F; zone 3 between the supply of the feedstock and the draw-off of the raffinate R; and zone 4 between the draw-off of the raffinate R and the supply of the desorbent D whereby the process is carried out according to a configuration of zones (a, b, c, d), whereby a, b, c, and d represent the number of adsorbent beds that operate respectively in zones 1, 2, 3, 4 in which there is used: Either an SMB of 12 adsorbent beds operating according to the configuration (2, 5, 3, 2), Or an SMB of 13 adsorbent beds operating according to the configuration (2, 5, 4, 2), Or an SMB of 15 adsorbent beds operating according to the configuration (2, 6, 4, 3).
摘要:
Process for separating paraxylene with a purity that is at least equal to 99.5% by weight from an aromatic feedstock F in a single adsorption stage in a simulated moving bed (SMB), comprising different numbers of beds, allocated to a zone 1 between the supply of the desorbent D and the draw-off of the extract E; a zone 2 between the draw-off of the extract E and the supply of the feedstock F; a zone 3 between the supply of the feedstock and the draw-off of the raffinate R; a zone 4 between the draw-off of the raffinate R and the supply of the desorbent D, wherein an SMB of 12 adsorbent beds has bed configuration (2, 5, 3, 2), an SMB of 15 adsorbent beds has bed configuration (3, 6, 4, 2), or an SMB of 19 adsorbent beds has bed configuration (4, 7, 6, 2), wherein the desorbent in this latter case is paradiethylbenzene.
摘要:
A process for the production of para-xylene by simulated counter-current adsorption with high flexibility with respect to a reference run (100%) uses 2 adsorbers each with 12 beds, said adsorbers being able to be connected in accordance with 3 different modes; the flexibility obtained is 50% to 150%.
摘要:
The present invention describes a novel configuration for simulated moving bed separation processes characterized by using two adsorbers each containing 12 beds, these two adsorbers functioning in parallel. This novel configuration can be used to optimize para-xylene production.
摘要:
Process for separation of a feedstock F by adsorption in a simulated moving bed in an SMB device that comprises a zone 1 for desorption of compounds produced by extraction, a zone 2 for desorption of compounds produced with a raffinate, a zone 3 for adsorption of compounds produced by extraction, and a zone 4 that is located between the draw-off of the raffinate and the supply of the desorbent,whereby the device comprises external bypass lines Li/i+1 directly joining two successive plates Pi, Pi+, that are equipped with non-automated means for adjusting flow rate and closing means, in which the degree of opening of the restriction means of the scavenging flow rate of the bypass lines Li/i+1 is adjusted so as to obtain the best performance of the SMB.
摘要翻译:在SMB装置的模拟移动床中通过吸附分离原料F的方法,其包括用于解吸由萃取物生产的化合物的区域1,用萃余液生产的化合物解吸区域2,用于吸附化合物的区域3 通过提取产生的区域4和位于萃余液的抽出物和解吸剂的供应之间的区域4,由此该装置包括直接连接两个连续的板Pi,Pi +的外部旁路管线Li / i + 1,其配备 用于调节旁路管线Li / i + 1的清除流量限制装置的开度的调节流量和关闭装置的非自动化装置,以获得SMB的最佳性能。
摘要:
A process for separating a feed F by simulated moving bed adsorption in a SMB device comprises at least one zone 1 for desorption of the compounds produced in the extract, a zone 2 for desorption of the compounds produced in the raffinate, a zone 3 for adsorption of the compounds produced in the extract, a zone 4 located between the raffinate withdrawal and the desorbant supply, the device comprising external by-pass lines Li/i+1 directly connecting two successive plates Pi and Pi+1;in which the degree of opening of means for restricting the flushing flow rate of the by-pass lines Li/i+1 are sequentially modified such that: 1) in an operational zone where there is at least one closed by-pass line, a super-synchronicity of the flushing flow rate is established in all of the by-pass lines which are not closed belonging to the zone under consideration, said super-synchronicity being defined by the following formula: S=a+b(nf/nt) in which the constant a is a constant in the range −5 to 5 and b is a constant in the range 40 to 100; 2) if there is no closed by-pass line in the zone under consideration (in other words if all of the by-pass lines of the zone are open), then a flow is established in all of the flushing lines of said zone which corresponds to the synchronicity plus or minus 8%.
摘要翻译:通过SMB装置中的模拟移动床吸附分离进料F的方法包括至少一个用于解吸萃取物中生成的化合物的区域1,用于解吸萃余液中生成的化合物的区域2,用于吸附的区域3 在提取物中产生的化合物,位于萃余液提取和解吸剂供应之间的区域4,该装置包括直接连接两个连续板Pi和Pi + 1的外部旁路管线Li / i + 1; 其中顺序修改限制旁路线Li / i + 1的冲洗流量的装置的打开程度,使得:1)在存在至少一个封闭旁路线的操作区域中, 在所考虑的区域内的所有未闭合的旁路线中建立冲洗流速的超同步性,所述超同步性由下式定义:S = a + b(nf / nt) 其中常数a为-5至5范围内的常数,b为40至100范围内的常数; 2)如果在所考虑的区域内没有闭路旁路线(换句话说,如果该区域的所有旁路线路都是打开的),则在所述区域的所有冲洗线路中建立流动, 对应于同步加或减8%。