Abstract:
The liquid hydrocarbon stream including COS is introduced via line 1 into membrane contactor CM to be placed in contact, through membrane M, with the aqueous alkanolamine solution arriving via line 3. The COS contained in the hydrocarbon stream is absorbed by the aqueous alkanolamine solution. The liquid hydrocarbons from which the COS has been removed are evacuated from CM via line 2. The aqueous solution containing COS is sent via line 4 to zone R to be regenerated. The compounds released during regeneration, particularly COS and COS-derived products, are evacuated from zone R via line 5. The regenerated aqueous alkanolamine solution is recycled via line 3 into membrane contactor CM.
Abstract:
A process for separating multibranched paraffins comprised in a hydrocarbon feed comprising hydrocarbons containing 5 to 8 carbon atoms per molecule comprises a separation unit functioning by adsorption and contains at least one zeolitic adsorbent with a mixed structure with principal channels with openings defined by a ring containing 10 oxygen atoms and secondary channels with openings defined by a ring of at least 12 oxygen atoms, the secondary channels only being accessible to the feed to be separated via the principal channels. Particular zeolitic adsorbents of the invention are zeolites with structure types EUO, NES and MWW. NU-85 and NU-86 zeolites are also particularly suitable for carrying out the process of the invention.
Abstract:
Process for the production of a RON isomerate that is at least equal to 80 and that contains less than 1% by weight of aromatic compounds and for co-production of an aromatic fraction that for the most part contains toluene, starting from a fraction with 7 carbon atoms containing paraffins, aromatic compounds and naphthenes.
Abstract:
The invention relates to a method for isomerising typically paraffinic hydrocarbon fractions having 5-7 carbon atoms consisting in using a membrane separation unit which is supplied by an overhead flux from a deisohexaniser which makes it possible to maximise the isopentane quantity in isomerate. Said invention makes it possible to definitely improve the isomerate RON and MON indices by the inventive method.
Abstract:
This invention describes a new hydrogen purification process that employs a combination of at least three membrane separation units. This process allows non-stationary operations and is particularly suitable for the production of hydrogen for the purpose of its use in a fuel cell.
Abstract:
This invention describes a new hydrogen purification process that employs a combination of at least three membrane separation units. This process allows non-stationary operations and is particularly suitable for the production of hydrogen for the purpose of its use in a fuel cell.
Abstract:
The present invention relates to a method of producing hydrogen of very high purity from a feed predominantly containing said hydrogen and a minor part of impurities mainly consisting of carbon dioxide, carbon monoxide, methane and heavier hydrocarbons.The purification method by hydrogen adsorption using a desorption stage at a lower pressure than the pressure of the feed, such as a PSA method for example, allows to produce the desorption stream and notably to recover the carbon dioxide under pressure and high-purity hydrogen, with a high yield.These performances are obtained by combining the successive stages of the method according to the invention with the use of a new family of adsorbent whose dynamic capacity at a high desorption pressure is greater than that of conventional adsorbents.
Abstract:
A non-homogeneous adsorbent is described, formed of a core and at least one continuous outer layer in which the core of said adsorbent has a volume adsorptive capacity representing at least 35% of the volume of the adsorbent and the outer layer has a diffusional selectivity greater than 5. The adsorbent is used in gas-separation processes or liquid-separation processes.
Abstract:
The invention relates to a method of isomerising a charge comprising hydrocarbons containing between 5 and 8 carbon atoms per molecule. According to the invention, said charge is separated into at least two fractions: fraction A mostly comprising hydrocarbons containing 5 or 6 carbon atoms and fraction B mostly comprising hydrocarbons containing 7 or 8 carbon atoms. Subsequently, said fractions A and B are treated separately under specific conditions in different isomerisation reaction zones.
Abstract:
The liquid hydrocarbon stream including COS is introduced via line 1 into membrane contactor CM to be placed in contact, through membrane M, with the aqueous alkanolamine solution arriving via line 3. The COS contained in the hydrocarbon stream is absorbed by the aqueous alkanolamine solution. The liquid hydrocarbons from which the COS has been removed are evacuated from CM via line 2. The aqueous solution containing COS is sent via line 4 to zone R to be regenerated. The compounds released during regeneration, particularly COS and COS-derived products, are evacuated from zone R via line 5. The regenerated aqueous alkanolamine solution is recycled via line 3 into membrane contactor CM.