摘要:
A physical layer communication device (PHY) transmits and receives signal to and from a communication link using a synchronous protocol. The PHY communicates with a higher-layer device using a packet protocol. Timestamp values contained in timing-related messages in some packets are written or modified by the PHY. Delays incurred in transmitting and receiving the packets are predicted and used in setting the timestamp values.
摘要:
A method and system for service clock transparent transmission in an optical transport network (OTN) are provided. The system includes a service accessing end and an OTN receiving end; the method includes the following steps: the OTN receiving end performs de-mapping operation to an OTN frame after receiving the OTN frame, and performs two-level buffering operation to the service data flow recovered therefrom, a first buffering unit performs a homogenization treatment to the service data flow and then outputs to a second buffering unit, which the second buffering unit outputs the service data flow according to the service clock after receiving the service data flow. After adopting the present invention, it is able to ensure that the quality of the recovered service clock is relatively higher, which meets the customer requirement on the related specification of the service clock.
摘要:
A method of processing a digital signal for transmission is provided comprising digital data frames, by compressing the digital data frames; and generating an optical data unit for transmission comprising multiple of the compressed digital data frames. The optical data unit is configured for transport by an Optical Transport Network, OTN.
摘要:
A method of communicating count value information in an Optical Transport Network (OTN) signal frame. The method comprises determining a count value indicating a number of payload bytes to be sent in a next OTN signal frame; determining that a change in the count value (Δ) with respect to a current count value is within a predetermined range; selecting an inversion pattern indicating the change in the count value; determining a cyclic redundancy check (CRC) code associated with the inversion pattern; and, inserting the inversion pattern and the CRC code in a Generic Mapping Procedure (GMP) overhead of the OTN signal frame.
摘要:
An Ethernet MAC OAMP Control sublayer is provided for supporting SDH/SONET OAMP standard functionality in Ethernet Networks. In accordance with one embodiment, an Ethernet MAC OAMP Control sublayer is provided for processing Ethernet MAC OAMP Control frames. The MAC OAMP Control sublayer provides support for a MAC OAMP Client to implement all of the SDH/SONET OAMP standard functionality. The MAC OAMP Control frame provides support for SDH/SONET OAMP on Ethernet networks. The Network Equipment can use the MAC OAMP Control frames to communicate with the downstream and upstream Network Equipment about various OAMP events, requests, performance parameters, communications channels, maintenance, and test functionality.
摘要:
Reframing circuitry controls communications between a physical layer device and a link layer device. In a first direction of communication, the reframing circuitry receives a container frame with the container frame having a first arrangement of columns, and outputs a virtual container frame that includes a modified version of the container frame received by the reframing circuitry, with the modified version of the container frame having a second arrangement of columns different than the first arrangement of columns. For example, the reframing circuitry in generating the modified version of the container frame may remove a path overhead column of the container frame and replace that path overhead column with a stuff column in the modified version of the container frame. The virtual container frame may be configured to include the path overhead column that was removed from the container frame in generating the modified version of the container frame.
摘要:
Systems and methods enable maximizing network data throughput via optimizing network capacity allocation. The network throughput maximization system comprises a network transporting data from source nodes to a destination node of the network, buffers for buffering data bytes to be sent from the source nodes to the destination node, and an element at the destination node that cyclically allocates the network capacity among the source nodes according to the amounts of data bytes arrived in the buffers at the source nodes during the previous capacity allocation cycle. The network data transport capacity allocation optimization method comprises steps of buffering at network source nodes data bytes to be transported to a network destination node, and cyclically allocating by the destination node the data transport capacity among the source nodes based on the relative volumes of bytes received in the buffers of the source nodes during the most recent capacity allocation cycle.
摘要:
Techniques described use Generic Framing Procedure (GFP) to transport data across an optical transport network between near and far Fibre Channel (FC) or Fibre Connectivity (FICON) local area optical networks. Each FC/FICON edge node (FCE) on an edge of the optical transport network has multiple modes for processing FC/FICON frames transported across the optical transport network. The techniques include receiving, at a near FCE from a far FCE, a GFP control plane message that includes a mode field that holds data that indicates a far mode, wherein the far mode is used at the far FCE. It is determined whether a near mode used by the near FCE matches the far mode based on the mode field. If it is determined that they do not match, then an alert is caused. These techniques allow software to utilize existing GFP chips in FCE that use optional processing, such as distance extension.
摘要:
In network systems for transporting GFP-encapsulated FICON frames across a SONET/SDH transport network between FICON ports, the transport interfaces for the FICON ports operate to drop duplicate and out-of-order frames transported across the SONET/SDH network. The transmitting transport interface inserts a sequence number incremented with each FICON frame into said one or more transport frames, whereby the sequence number is used as an index for determining duplicate and out-of-order frames after transport over said SONET/SDH network. The receiving transport interface compares sequence numbers with each FICON frame to determine duplicate and out-of-order FICON frames, drops the duplicate and out-of-order FICON frames; and sends the balance of the compared FICON frames to the receiving FICON port.
摘要:
A transmitting system inserts runt abort packets in an outgoing data stream during idle time inter-frame time fill. The runt abort packets cause the receiving system to synchronize itself to the transmitting system so that even if an error during inter-frame time fill causes the receiving system to go into an erroneous state, the receiving system will be synchronized with the transmitting system before receiving valid data. In one embodiment, the transmitting system transmits data in packets over SONET, The packet data is scrambled at the transmitting end and descrambled at the receiving end. Runt abort packets. sent during inter-frame time fill resynchronize the descrambler. If there is an error in the inter-frame time fill bytes, causing the receiving end descrambler to no longer be synchronized with the transmitting end scrambler, the runt abort packets will cause the descrambler to resynchronize state with the transmitting scrambler.