Abstract:
A RFID transponder includes an electronic circuit and an antenna, the electronic circuit being integrated in a p-type substrate and comprising a modulator formed by a PMOS transistor whose drain, electrically connected to a pad of the antenna, and source, connected to the ground of the electronic circuit, are arranged in an n-type well provided in the p-type substrate. The PMOS transistor has a gate driven by a driving circuit which is arranged for providing at least a negative voltage, this negative voltage being low enough for turning on this PMOS transistor in response to a control signal provided by a logical unit of the electronic circuit.
Abstract:
An RFID transponder chip includes at least one antenna to pick-up and transmit radio-frequency signals, a rectifier to store charge on at least one capacitor at a rectified voltage from the picked-up radio-frequency signals, a power-on reset circuit to maintain a logic unit in a reset state if the rectified voltage level is less than a power-on reset or wake-up voltage of the power-on reset circuit for operating the logic unit. The RFID transponder chip further includes a non-volatile memory, in which are stored one or several trim values. Said non-volatile memory is directly connected to the power-on reset circuit to be able to provide at least one trim value to trim the power-on reset circuit at a rectified voltage level below a wake-up voltage level.
Abstract:
The self-powered detection device comprises a Non-Volatile Memory (NVM) unit formed by at least a NVM cell and a sensor activated by a physical or chemical action or phenomenon, the NVM unit arranged for storing in the NVM cell, by using electrical power of the electrical stimulus pulse, a bit of information relative to detection by the sensor, during a detection mode of the self-powered detection device, of at least one physical or chemical action or phenomenon applied to it with at least a given strength or intensity and resulting in a voltage stimulus signal provided between a set control terminal and a base terminal of the NVM unit with at least a given set voltage.
Abstract:
The self-powered detection device comprises a Non-Volatile Memory (NVM) unit (52) formed by at least a NVM cell and a sensor which is activated by a physical or chemical action or phenomenon, the NVM unit being arranged for storing in said NVM cell, by using the electrical power of said electrical stimulus pulse, a bit of information relative to the detection by said sensor, during a detection mode of the self-powered detection device, of at least one physical or chemical action or phenomenon applied to it with at least a given strength or intensity and resulting in a voltage stimulus signal provided between a set control terminal (SET) and a base terminal (SET *) of the NVM unit with at least a given set voltage. In a first principal embodiment, the self-powered detection device comprises a read circuit (56) and a switch (58,60) arranged in the electrical path between the ground (GND) of the sensor and a terminal of the NVM cell and having its control gate (G) electrically connected to the set control terminal (SET), said switch being ON when its control gate receives in a detection mode said voltage stimulus signal and the self-powered detection device being arranged so that this switch is OFF in the read mode. In a second principal embodiment, a reset circuit is electrically connected in a reset mode to the base terminal (SET *) of the NVM unit for resetting said NVM cell and the self-powered detection device comprises a switch (58,60) arranged between the ground (GND) of the sensor and this base terminal and having its control gate (G) electrically connected to the set control terminal (SET), said switch being ON when its control gate receives in a detection mode said voltage stimulus signal and the self-powered detection device being arranged so that this switch is OFF in the reset mode.
Abstract:
A ferroelectric field effect transistor (FET) has a gate, source, drain, and substrate. A negative voltage is applied to the gate. Ground potential is applied to the source, drain, and substrate. The negative voltage has a magnitude at least equal to the coercive voltage of the FET. A positive voltage is then applied to the gate. Ground potential is applied to the source and substrate. The positive voltage is no less than the coercive voltage. Either a positive voltage or a ground potential is applied to the drain to write a logic state to the FET. A voltage is applied to the gate. Ground potential is applied to the source. A positive voltage is applied to the drain. The drain current is measured and compared to a compare current. The relative size of the drain current compared to the compare current is indicative of the stored logic state in the FET.
Abstract:
A ferroelectric destructive read-out memory system includes a power source, a memory array including a memory cell, and a logic circuit for applying a signal to the memory array. Whenever a low power condition is detected in said power source, a disturb prevent circuit prevents unintended voltages due to the low power condition from disturbing the memory cell. The disturb prevent circuit also stops the operation of the logic circuit for a time sufficient to permit a rewrite cycle to be completed, thereby preventing loss of the data being rewritten.
Abstract:
An RFID transponder chip includes at least one antenna to pick-up and transmit radio-frequency signals, a rectifier to store charge on at least one capacitor at a rectified voltage from the picked-up radio-frequency signals, a power-on reset circuit to maintain a logic unit in a reset state if the rectified voltage level is less than a power-on reset or wake-up voltage of the power-on reset circuit for operating the logic unit. The RFID transponder chip further includes a non-volatile memory, in which are stored one or several trim values. Said non-volatile memory is directly connected to the power-on reset circuit to be able to provide at least one trim value to trim the power-on reset circuit at a rectified voltage level below a wake-up voltage level.
Abstract:
The self-powered detection device comprises a non-volatile memory cell and a sensor activated by a physical or chemical action or phenomenon, this sensor forming an energy harvester transforming energy from the physical or chemical action orphenomenon into an electrical stimulus pulse, the memory cell arranged for storing, by using electrical power of the electrical stimulus pulse, at least a bit of information relative to detection by the sensor of at least a first physical or chemical action or phenomenon. The non-volatile memory cell comprises a FET transistor having a control gate, a first diffusion defining a first input and a second diffusion defining a second input. This FET transistor is set to its written logical state from its initial logical state when, in a detection mode, it receives on a set terminal a voltage stimulus signal resulting from the first physical or chemical action or phenomenon.
Abstract:
The external event detection device comprises an electronic unit (22) and an external event sensor (16), the electronic unit having at least a non-volatile memory cell (24, T1) in which data relative to at least one external event detected by the external event sensor can be stored. According to the invention, the external event sensor defines an energy harvester that transforms energy from said at least one external event into electrical energy contained in an electrical stimulus pulse provided to the electronic unit. The electronic unit is arranged for storing said data by using only the electrical energy contained in the electrical stimulus pulse. In particular, the non-volatile memory cell is directly set to its written logical state from its initial logical state by the electrical stimulus pulse provided by said energy harvester. In a preferred embodiment, the electronic unit further comprises a set circuit (26) comprising a second FET transistor (T2) arranged between the ground of the electronic unit and the drain of a first FET transistor (T1) defining the non-volatile memory cell, this switch having a control gate connected to the control gate of the first FET transistor. The second FET transistor is turned on when an electrical stimulus pulse is provided to the electronic unit, connecting the drain (DRN) of the first FET transistor (T1) to ground and thus allowing the secure setting of the non-volatile memory cell.
Abstract:
A ferroelectric integrated circuit memory device includes: a plurality of memory cells, each including a ferroelectric material, a plurality of conducting lines, each connected to or connectable to a selected one of the memory cells; a drive circuit for applying a predetermined voltage for a predetermined time to a selected one of the conducting lines, the predetermined voltage and time being the normal voltage and time required to perform write or read functions to the memory cell, a function selected from the group of: writing a logic state to the selected memory cell, and reading the selected memory cell; and a mode control circuit responsive to an external signal for adjusting the predetermined voltage or the predetermined time to perform an operation selected from the group consisting of: a partial read of the selected memory cell, and a partial write of the selected memory cell; and applying ferroelectric stress to the memory cell. A known logic state is written to the memory cells, the cells are heated, and then read to provide output data indicative of the likelihood of premature failure for each of the memory cells. Ferroelectric stress is applied to the cells either before or after the cells are written to by repeatedly applying a voltage to the cells corresponding to a logic state opposite that of the written logic state.