摘要:
Systems and methods for integrating multiple best effort hardware transactional support mechanisms, such as Read Set Monitoring (RSM) and Best Effort Hardware Transactional Memory (BEHTM), in a single transactional memory implementation are described. The best effort mechanisms may be integrated such that the overhead associated with support of multiple mechanisms may be reduced and/or the performance of the resulting transactional memory implementations may be improved over those that include any one of the mechanisms, or an un-integrated collection of multiple such mechanisms. Two or more of the mechanisms may be employed concurrently or serially in a single attempt to execute a transaction, without aborting or retrying the transaction. State maintained or used by a first mechanism may be shared with or transferred to another mechanism for use in execution of the transaction. This transfer may be performed automatically by the integrated mechanisms (e.g., without user, programmer, or software intervention).
摘要:
A partitioned ticket lock may control access to a shared resource, and may include a single ticket value field and multiple grant value fields. Each grant value may be the sole occupant of a respective cache line, an event count or sequencer instance, or a sub-lock. The number of grant values may be configurable and/or adaptable during runtime. To acquire the lock, a thread may obtain a value from the ticket value field using a fetch-and-increment type operation, and generate an identifier of a particular grant value field by applying a mathematical or logical function to the obtained ticket value. The thread may be granted the lock when the value of that grant value field matches the obtained ticket value. Releasing the lock may include computing a new ticket value, generating an identifier of another grant value field, and storing the new ticket value in the other grant value field.
摘要:
In modern multi-threaded environments, threads often work cooperatively toward providing collective or aggregate throughput for an application as a whole. Optimizing in the small for “thread local” common path latency is often but not always the best approach for a concurrent system composed of multiple cooperating threads. Some embodiments provide a technique for augmenting traditional code emission with thread-aware policies and optimization strategies for a multi-threaded application. During operation, the system obtains information about resource contention between executing threads of the multi-threaded application. The system analyzes the resource contention information to identify regions of the code to be optimized. The system recompiles these identified regions to produce optimized code, which is then stored for subsequent execution.
摘要:
The system and methods described herein may be used to implement a scalable, hierarchal, queue-based lock using flat combining. A thread executing on a processor core in a cluster of cores that share a memory may post a request to acquire a shared lock in a node of a publication list for the cluster using a non-atomic operation. A combiner thread may build an ordered (logical) local request queue that includes its own node and nodes of other threads (in the cluster) that include lock requests. The combiner thread may splice the local request queue into a (logical) global request queue for the shared lock as a sub-queue. A thread whose request has been posted in a node that has been combined into a local sub-queue and spliced into the global request queue may spin on a lock ownership indicator in its node until it is granted the shared lock.
摘要:
A method for managing a memory, including obtaining a number of indices and a cache line size of a cache memory, computing a cache page size by multiplying the number of indices by the cache line size, calculating a greatest common denominator (GCD) of the cache page size and a first size class, incrementing, in response to the GCD of the cache page size and the first size class exceeding the cache line size, the first size class to generate an updated first size class, calculating a GCD of the cache page size and the updated first size class, creating, in response to the GCD of the cache page size and the updated first size class being less than the cache line size, a first superblock in the memory including a first plurality of blocks of the updated first size class, and creating a second superblock in the memory.
摘要:
In traditional transactional locking systems, such as Transactional Locking with Read-Write locks (TLRW), threads may frequently update lock metadata, causing system performance degradation. A system and method for implementing transactional locking using reader-lists (TLRL) may associate a respective reader-list with each stripe of data in a shared memory system. Before reading a given stripe as part of a transaction, a thread may add itself to the stripe's reader-list, if the thread is not already on the reader-list. A thread may leave itself on a reader-list after finishing the transaction. Before a thread modifies a stripe, the modifying thread may acquire a write-lock for the stripe. The writer thread may indicate to each reader thread on the stripe's reader-list that if the reader thread is executing a transaction, the reader thread should abort. The indication may include setting an invalidation flag for the reader. The writer thread may clear the reader-list of a stripe it modified.
摘要:
A computer system includes multiple processing threads that execute in parallel. The multiple processing threads have access to a global environment including different types of metadata enabling the processing threads to carry out simultaneous execution depending on a currently selected type of lock mode. A mode controller monitoring the processing threads initiates switching from one type of lock mode to another depending on current operating conditions such as an amount of contention amongst the multiple processing threads to modify the shared data. The mode controller can switch from one lock mode another regardless of whether any of the multiple processes are in the midst of executing a respective transaction. A most efficient lock mode can be selected to carry out the parallel transactions. In certain cases, switching of lock modes causes one or more of the processing threads to abort and retry a respective transaction according to the new mode.
摘要:
One embodiment provides a system that facilitates the execution of a transaction for a program in a hardware-supported transactional memory system. During operation, the system records a misspeculation indicator of the transaction during execution of the transaction using hardware transactional memory mechanisms. Next, the system detects a transaction failure associated with the transaction. Finally, the system provides the recorded misspeculation indicator to the program to facilitate a response to the transaction failure by the program.
摘要:
A system and method for concurrency control may use slotted read-write locks. A slotted read-write lock is a lock data structure associated with a shared memory area, wherein the slotted read-write lock indicates whether any thread has a read-lock and/or a write-lock for the shared memory area. Multiple threads may concurrently have the read-lock but only one thread can have the write-lock at any given time. The slotted read-write lock comprises multiple slots, each associated with a single thread. To acquire the slotted read-write lock for reading, a thread assigned to a slot performs a store operation to the slot and then attempts to determine that no other thread holds the slotted read-write lock for writing. To acquire the slotted read-write lock for writing, a thread assigned to a slot sets its write-bit and then attempts to determine that the write-lock is not held.
摘要:
Techniques are provided for quickly reacquiring mutual exclusion locks (QRLs), such as in the case in which a single process repeatedly acquires and releases the lock and in which no other process attempts to acquire the same lock. When the first holder of a QRL first acquires the lock, it biases the lock to itself. Bias may be directed in different way or at different times in some realizations. Biasing may involve a one-time compare-and-swap instruction. Thereafter, this bias-holder can reacquire and release the lock free of atomic read-modify-write operations. If a second process attempts to acquire a QRL, then the lock may revert to a “default lock”. Any standard mutual exclusion lock may be used as the default lock. A QRL lock may be reinitialized so that it can be rebiased. Rebiasing may be valuable in the case of migratory data access patterns.