摘要:
The system and methods described herein may be used to implement a scalable, hierarchal, queue-based lock using flat combining. A thread executing on a processor core in a cluster of cores that share a memory may post a request to acquire a shared lock in a node of a publication list for the cluster using a non-atomic operation. A combiner thread may build an ordered (logical) local request queue that includes its own node and nodes of other threads (in the cluster) that include lock requests. The combiner thread may splice the local request queue into a (logical) global request queue for the shared lock as a sub-queue. A thread whose request has been posted in a node that has been combined into a local sub-queue and spliced into the global request queue may spin on a lock ownership indicator in its node until it is granted the shared lock.
摘要:
The system and methods described herein may be used to implement NUMA-aware locks that employ lock cohorting. These lock cohorting techniques may reduce the rate of lock migration by relaxing the order in which the lock schedules the execution of critical code sections by various threads, allowing lock ownership to remain resident on a single NUMA node longer than under strict FIFO ordering, thus reducing coherence traffic and improving aggregate performance. A NUMA-aware cohort lock may include a global shared lock that is thread-oblivious, and multiple node-level locks that provide cohort detection. The lock may be constructed from non-NUMA-aware components (e.g., spin-locks or queue locks) that are modified to provide thread-obliviousness and/or cohort detection. Lock ownership may be passed from one thread that holds the lock to another thread executing on the same NUMA node without releasing the global shared lock.
摘要:
NUMA-aware reader-writer locks may leverage lock cohorting techniques to band together writer requests from a single NUMA node. The locks may relax the order in which the lock schedules the execution of critical sections of code by reader threads and writer threads, allowing lock ownership to remain resident on a single NUMA node for long periods, while also taking advantage of parallelism between reader threads. Threads may contend on node-level structures to get permission to acquire a globally shared reader-writer lock. Writer threads may follow a lock cohorting strategy of passing ownership of the lock in write mode from one thread to a cohort writer thread without releasing the shared lock, while reader threads from multiple NUMA nodes may simultaneously acquire the shared lock in read mode. The reader-writer lock may follow a writer-preference policy, a reader-preference policy or a hybrid policy.
摘要:
The systems and methods described herein may enable a processor core to run at higher speeds than other processor cores in the same package. A thread executing on one processor core may begin waiting for another thread to complete a particular action (e.g., to release a lock). In response to determining that other threads are waiting, the thread/core may enter an inactive state. A data structure may store information indicating which threads are waiting on which other threads. In response to determining that a quorum of threads/cores are in an inactive state, one of the threads/cores may enter a turbo mode in which it executes at a higher speed than the baseline speed for the cores. A thread holding a lock and executing in turbo mode may perform work delegated by waiting threads at the higher speed. A thread may exit the inactive state when the waited-for action is completed.
摘要:
The system and methods described herein may be used to implement NUMA-aware locks that employ lock cohorting. These lock cohorting techniques may reduce the rate of lock migration by relaxing the order in which the lock schedules the execution of critical code sections by various threads, allowing lock ownership to remain resident on a single NUMA node longer than under strict FIFO ordering, thus reducing coherence traffic and improving aggregate performance. A NUMA-aware cohort lock may include a global shared lock that is thread-oblivious, and multiple node-level locks that provide cohort detection. The lock may be constructed from non-NUMA-aware components (e.g., spin-locks or queue locks) that are modified to provide thread-obliviousness and/or cohort detection. Lock ownership may be passed from one thread that holds the lock to another thread executing on the same NUMA node without releasing the global shared lock.
摘要:
NUMA-aware reader-writer locks may leverage lock cohorting techniques to band together writer requests from a single NUMA node. The locks may relax the order in which the lock schedules the execution of critical sections of code by reader threads and writer threads, allowing lock ownership to remain resident on a single NUMA node for long periods, while also taking advantage of parallelism between reader threads. Threads may contend on node-level structures to get permission to acquire a globally shared reader-writer lock. Writer threads may follow a lock cohorting strategy of passing ownership of the lock in write mode from one thread to a cohort writer thread without releasing the shared lock, while reader threads from multiple NUMA nodes may simultaneously acquire the shared lock in read mode. The reader-writer lock may follow a writer-preference policy, a reader-preference policy or a hybrid policy.
摘要:
The system and methods described herein may be used to implement a scalable, hierarchal, queue-based lock using flat combining. A thread executing on a processor core in a cluster of cores that share a memory may post a request to acquire a shared lock in a node of a publication list for the cluster using a non-atomic operation. A combiner thread may build an ordered (logical) local request queue that includes its own node and nodes of other threads (in the cluster) that include lock requests. The combiner thread may splice the local request queue into a (logical) global request queue for the shared lock as a sub-queue. A thread whose request has been posted in a node that has been combined into a local sub-queue and spliced into the global request queue may spin on a lock ownership indicator in its node until it is granted the shared lock.
摘要:
A system and method is disclosed for fast lock acquisition and release in a lock-based software transactional memory system. The method includes determining that a group of shared memory areas are likely to be accessed together in one or more atomic memory transactions executed by one or more threads of a computer program in a transactional memory system. In response to determining this, the system associates the group of memory areas with a single software lock that is usable by the transactional memory system to coordinate concurrent transactional access to the group of memory areas by the threads of the computer program. Subsequently, a thread of the program may gain access to a plurality of the memory areas of the group by acquiring the single software lock.
摘要:
A system and method is disclosed for fast lock acquisition and release in a lock-based software transactional memory system. The method includes determining that a group of shared memory areas are likely to be accessed together in one or more atomic memory transactions executed by one or more threads of a computer program in a transactional memory system. In response to determining this, the system associates the group of memory areas with a single software lock that is usable by the transactional memory system to coordinate concurrent transactional access to the group of memory areas by the threads of the computer program. Subsequently, a thread of the program may gain access to a plurality of the memory areas of the group by acquiring the single software lock.
摘要:
The systems and methods described herein may enable a processor core to run at higher speeds than other processor cores in the same package. A thread executing on one processor core may begin waiting for another thread to complete a particular action (e.g., to release a lock). In response to determining that other threads are waiting, the thread/core may enter an inactive state. A data structure may store information indicating which threads are waiting on which other threads. In response to determining that a quorum of threads/cores are in an inactive state, one of the threads/cores may enter a turbo mode in which it executes at a higher speed than the baseline speed for the cores. A thread holding a lock and executing in turbo mode may perform work delegated by waiting threads at the higher speed. A thread may exit the inactive state when the waited-for action is completed.