Abstract:
A coated substrate comprising a nanostructure film formed on a non-planar substrate is described. The coated substrate may further be compliant, optically transparent and/or electrically conductive. Fabrication methods thereof are also described.
Abstract:
A transparent and conductive film comprising at least one network of graphene flakes is described herein. This film may further comprise an interpenetrating network of other nanostructures, a polymer and/or a functionalization agent(s). A method of fabricating the above device is also described, and may comprise depositing graphene flakes in solution and evaporating solvent therefrom.
Abstract:
A coated substrate comprising a nanostructure film formed on a non-planar substrate is described. The coated substrate may further be compliant, optically transparent and/or electrically conductive. Fabrication methods thereof are also described.
Abstract:
A transparent and conductive film comprising at least one network of graphene flakes is described herein. This film may further comprise an interpenetrating network of other nanostructures, a polymer and/or a functionalization agent(s). A method of fabricating the above device is also described, and may comprise depositing graphene flakes in solution and evaporating solvent therefrom.
Abstract:
A nanostructure film, comprising at least one interconnected network of nanostructures, wherein the nanostructure film is optically transparent and electrically conductive. A method for improving the optoelectronic properties of a nanostructure film, comprising: forming a nanostructure film having a thickness that, if uniform, would result in a first optical transparency and a first sheet resistance that are lower than desired; and patterning holes in the nanostructure film, such that a desired higher second optical transparency and a second sheet resistance are achieved. A method for depositing a nanostructure film on a rigid substrate comprises: depositing the nanostructure film on a flexible substrate; and transferring the nanostructure film from the flexible substrate to a rigid substrate, wherein the flexible substrate comprises at least one of a release liner and a heat- or chemical-sensitive adhesive layer.
Abstract:
An optoelectronic device comprising at least one nanostructure-film electrode is discussed. The optoelectronic device may further comprise a different material, such as a polymer, to fill pores in the nanostructure-film. Additionally or alternatively, the optoelectronic device may comprise an electrode grid superimposed on the nanostructure-film.
Abstract:
A doped nanostructure network, devices incorporating a doped nanostructure network and fabrication methods thereof are described. Dopant may be deposited by a solution-based method, and the dopant is preferably stable over an extended period of time. Networks according to embodiments of the present invention can exhibit conductivities in excess of 4000 S/cm.
Abstract:
A transparent and conductive film comprising at least one network of graphene flakes is described herein. This film may further comprise an interpenetrating network of other nanostructures, a polymer and/or a functionalization agent(s). A method of fabricating the above device is also described, and may comprise depositing graphene flakes in solution and evaporating solvent therefrom.
Abstract:
A simplified method and an apparatus for making bows comprises a base into which movable rods and fixed hoops are perpendicularly set whereupon a bow or other decoration may be made by winding ribbon or the like around the rods while retaining said ribbon between the hoops and then tying off the ribbon into a bow through the application of a tying means banded transversely and securely around the wound ribbon, whereupon said bow is removed from device and shaped into an aesthetically pleasing bow.
Abstract:
A nanostructure film, comprising at least one interconnected network of nanostructures, wherein the nanostructure film is optically transparent and electrically conductive. A method for improving the optoelectronic properties of a nanostructure film, comprising: forming a nanostructure film having a thickness that, if uniform, would result in a first optical transparency and a first sheet resistance that are lower than desired; and patterning holes in the nanostructure film, such that a desired higher second optical transparency and a second sheet resistance are achieved. A method for depositing a nanostructure film on a rigid substrate comprises: depositing the nanostructure film on a flexible substrate; and transferring the nanostructure film from the flexible substrate to a rigid substrate, wherein the flexible substrate comprises at least one of a release liner and a heat- or chemical-sensitive adhesive layer.