Abstract:
A multipurpose chemical additives (MPC) is disclosed to mitigate fouling in hydrocarbon refinery processes, such as in a heat exchanger. A method for reducing fouling of a hydrocarbon is also disclosed that includes (i) providing a crude hydrocarbon for a refining process; and (ii) adding an additive to the crude hydrocarbon.
Abstract:
The invention relates to upgraded pyrolysis products, hydroconversion processes for upgrading products obtained from hydrocarbon pyrolysis, equipment useful for such processes. In particular the invention provides methods for reducing coke fouling in such equipment.
Abstract:
This invention relates to a process for the selective conversion of vacuum gas oil. The vacuum gas oil is treated in a two step process. The first is thermal conversion and the second is catalytic cracking of the products of thermal conversion. The product slate can be varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step. The combined products from thermal and catalytic cracking are separated in a divided wall fractionator.
Abstract:
Self-compatible heavy oil streams are produced from converted and/or desulfurized fractions. In a preferred embodiment, an incompatibility stream is added to the converted and/or desulfurized stream to reduce the solubility number of the stream. After using a water wash to remove incompatible material, a lighter fraction is removed from the stream to increase the solubility number.
Abstract:
A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not normally higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to form a low boiling fraction and a relatively higher boiling fraction which is subjected to membrane separation to produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
Abstract:
A heavy residual petroleum feed boiling above 650° F.+ (345° C.+) is subjected to membrane separation to produce a produce a permeate which is low in metals and Microcarbon Residue (MCR) as well as a retentate, containing most of the MCR and metals, the retentate is then subjected to hydroconversion at elevated temperature in the presence of hydrogen at a hydrogen pressure not higher than 500 psig (3500 kPag) using a dispersed metal-on-carbon catalyst to produce a hydroconverted effluent which is fractionated to give naphtha, distillate and gas oil fractions. The permeate from the membrane separation may be used as FCC feed either as such or with moderate hydrotreatment to remove residual heteroatoms. The process has the advantage that the hydroconversion may be carried out in low pressure equipment with a low hydrogen consumption as saturation of aromatics is reduced.
Abstract:
A method for treating an emulsion of a hydrocarbon is disclosed. The method includes providing an emulsion of a crude hydrocarbon, and adding an additive to the emulsion to obtain a treated hydrocarbon.
Abstract:
The present invention is directed to a membrane for ethanol and aromatics separation that is stable in an alcohol containing environment. The membrane is a polyether epoxy resin having an aliphatic substituted epoxide. The invention also teaches a method to control the flux and selectivity of the membrane.
Abstract:
The present invention is directed to a membrane for ethanol and aromatics separation that is stable in an alcohol containing environment. The membrane is a polyether epoxy resin having an aliphatic substituted epoxide. The invention also teaches a method to control the flux and selectivity of the membrane.
Abstract:
The present invention relates to a process for the selective conversion of hydrocarbon feed having a Conradson Carbon Residue content of 0 to 6 wt %, based on the hydrocarbon feed. The hydrocarbon feed is treated in a two-step process. The first is thermal conversion and the second is catalytic cracking of the products of the thermal conversion. The present invention results in a process for increasing the distillate production from a hydrocarbon feedstream for a fluid catalytic cracking unit. The resulting product slate from the present invention can be further varied by changing the conditions in the thermal and catalytic cracking steps as well as by changing the catalyst in the cracking step.