Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant as metal residuals. In the present disclosure, the metals can be recovered in a chemical precipitation step, wherein the supernatant is mixed with at least one of an acid, a sulfide-containing compound, a base, and combinations thereof to precipitate at least 50% of metal ions in at least one of the metal residuals, wherein the precipitation is carried out at a pre-select pH. The precipitate is isolated and recovered, yielding an effluent stream. The precipitate and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction. The process generates an effluent to waste treatment containing less than 50 ppm metals.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered in an electro-coagulation reactor, wherein portion of the metal residuals in the supernatant reacts with the electrodes to form a slurry containing insoluble metal compounds. The insoluble metal compounds are isolated and recovered, forming an effluent stream. The insoluble metal compounds and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and stay in the supernatant. In one embodiment, at least a precipitant is added to the product mixture at a molar ratio of precipitant to metal residuals in the supernatant ranging from 1.5:1 to 20:1 to precipitate at least 50 mole % of metal ions in the residuals forming additional catalyst precursor. The remaining metal residuals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of at least one of the metal residuals. In one embodiment, at least one of the metal residuals is recovered and recycled for use as a metal precursor feed in the co-precipitation reaction.
Abstract:
The invention relates to a bulk multi-metallic catalyst for hydrotreating heavy oil feeds and to a method for preparing the catalyst. The bulk multi-metallic catalyst is prepared by sulfiding a catalyst precursor having a poorly crystalline structure with disordered stacking layers, with a type IV adsorption-desorption isotherms of nitrogen with a hysteresis starting point value of about 0.35, for a sulfided catalyst that will facilitate the reactant's and product's diffusion in catalytic applications. In another embodiment, the precursor is characterized as having a type H3 hysteresis loop. In a third embodiment, the hysteresis loop is characterized as having a well developed plateau above P/Po of about 0.55. The mesapores of the precursor can be adjustable or tunable.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of metal ions in at least one of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant as metal residuals. In the present disclosure, the metals can be recovered via ion-exchange, wherein an exchange resin is provided for a portion of the metal ions in the supernatant to be exchanged and bound onto the resin. The previously resin-bound metals can be subsequently recovered, or the effluent stream for the exchange resin column can also be recovered, forming at least a metal precursor feed which can be used in the co-precipitation reaction.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and stay in the supernatant. In one embodiment, at least a precipitant is added to the product mixture at a molar ratio of precipitant to metal residuals in the supernatant ranging from 1.5:1 to 20:1 to precipitate at least 50 mole % of metal ions in the residuals forming additional catalyst precursor. The remaining metal residuals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of at least one of the metal residuals. In one embodiment, at least one of the metal residuals is recovered and recycled for use as a metal precursor feed in the co-precipitation reaction.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered in an electro-coagulation reactor, wherein portion of the metal residuals in the supernatant reacts with the electrodes to form a slurry containing insoluble metal compounds. The insoluble metal compounds are isolated and recovered, forming an effluent stream. The insoluble metal compounds and/or the effluent stream can be further treated to form at least a metal precursor feed which can be used in the co-precipitation reaction.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds end up in the supernatant. The metals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of metal ions in at least one of the metal residuals, and for at least one of the metal residuals recovered as a metal precursor feed for use in the co-precipitation reaction. In one embodiment, the resin functions as an anion exchange resin with an acidic supernatant to recover Group VIB metal residuals, and a cation exchange resin with a basic supernatant to recover Promoter metal residuals. An effluent stream from the process to waste treatment contains less than 50 ppm metals.
Abstract:
In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of metal ions in at least one of the metal residuals, and for at least one of the metal residuals is recovered as a metal precursor feed, which can be recycled for use in the co-precipitation reaction. An effluent stream from the process to waste treatment contains less than 50 ppm metal ions.
Abstract:
A catalyst and a process for making a catalyst from a precursor composition containing rework materials are disclosed. The catalyst is made by sulfiding a catalyst precursor containing 5-95 wt. % rework material. The catalyst precursor employing rework materials can be a hydroxide or oxide material. Rework can be materials generated in the forming or shaping of the catalyst precursor, or formed upon the breakage or handling of the shaped catalyst precursor. Rework can also be in the form of catalyst precursor feed material to the shaping process, e.g., extrusion process, or catalyst precursor material generated as reject or scrap in the shaping process. In some embodiment, rework may be of the consistency of shapeable dough. In another embodiment, rework is in the form of small pieces or particles, e.g., fines, powder.