Abstract:
A constant velocity joint is provided that includes an outer race having a bore with an inside surface, a cage arranged within the bore of the outer race, an inner race having an outer surface; and a plurality of balls arranged within the cage. A shaft is connected to the inner race. The cage remains in a non-contacting state with said outer race through a zero angle and a high angle position of the shaft.
Abstract:
A high angle constant velocity joint for use in a vehicle. The high angle constant velocity joint includes an outer race having a bore therethrough. The outer race also includes a plurality of tracks on an inside surface of the outer race. The constant velocity joint includes a cage arranged within the bore of the outer race without contacting the outer race. The constant velocity joint also includes an inner race arranged within the cage, the inner race having a plurality of tracks on an outer surface with one half of the tracks open in a direction opposite of another one half of the tracks on the inner race. The constant velocity joint also includes a plurality of large diameter balls arranged within the cage and tracks of the inner and outer race. The constant velocity joint has a shaft connected to the inner race and a pliable boot arranged between the outer race and the shaft. The constant velocity joint also includes a cap contacting the outer race. The high-speed, high angle constant velocity joint will allow for a more efficient and smaller package constant velocity joint for use in high angles and high speeds thus increasing the reliability of the boot and overall reliability of the constant velocity joint.
Abstract:
A constant velocity joint assembly and a method of securing a shaft to the assembly are described. The assembly may have an outer race with a first portion having a plurality of grooves and a second portion that extends from the first portion and is substantially parallel to the shaft. The method of securing the shaft to the assembly includes the step of magnetically pulse welding the shaft to the outer race.
Abstract:
A propeller shaft assembly includes a thin-walled tubular member, a connecting member fixed to each end of the tubular member, and a support member fixed within the tubular member. The support member includes a foamed plastic impregnated with a high modulus resin or cement extending a first length (L1) within the tubular member and engaging an interior surface of the tubular member to increase the bending frequency of the propeller shaft assembly.
Abstract:
A constant velocity joint for use in a prop shaft of an automotive vehicle includes an outer race. The constant velocity joint also includes an inner race arranged within the outer race and a rolling element arranged between the outer race and inner race. A cage is arranged between the outer race and inner race such that the cage positions the rolling element therebetween. The constant velocity joint also includes a flange contacting the outer race. Torque is transmitted through the use of a face spline. A collar contacts the flange and outer race and secures the flange and outer race to one another in an axial direction.
Abstract:
A constant velocity joint assembly and a method of securing a shaft to the assembly are described. The assembly may have an outer race with a first portion having a plurality of grooves and a second portion that extends from the first portion and is substantially parallel to the shaft. The method of securing the shaft to the assembly includes the step of magnetically pulse welding the shaft to the outer race.
Abstract:
A constant velocity joint is provided that includes an outer race having a bore with an inner surface, a cage arranged within the bore of the outer race, an inner race having an outer surface, a plurality of balls arranged within the cage, and a shaft connected to the inner race. The cage, outer race, inner race, and balls interrelate to center and support the cage. The cage remains in a non-supporting state with the outer race and the inner race through a no angle and a high angle position of the shaft.
Abstract:
A propeller shaft assembly includes a thin-walled tubular member, a connecting member fixed to each end of the tubular member, and a support member fixed within the tubular member. The support member includes a plurality of radial elements extending a first length (L1) within the tubular member and engaging an interior surface of the tubular member to increase the bending frequency of the propeller shaft assembly. In one example, the support member includes a central hub coaxially located within the tubular member and the radial elements extend from the central hub to the interior surface of the tubular member. The radial elements can include enlarged end portions for engaging the interior surface of the tubular member. The radial elements, at their ends, can also include either axial or circumferential grooves which act as an adhesive reservoir.