3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof
    1.
    发明授权
    3-dimensional nanostructure having nanomaterials stacked on graphene substrate and fabrication method thereof 有权
    具有堆叠在石墨烯衬底上的纳米材料的三维纳米结构及其制造方法

    公开(公告)号:US08808860B2

    公开(公告)日:2014-08-19

    申请号:US13322385

    申请日:2010-09-20

    IPC分类号: B32B9/00

    摘要: The present invention relates to a 3-dimensional nanostructure having nanomaterials stacked on a graphene substrate; and more specifically, to a 3-dimensional nanostructure having at least one nanomaterial selected from nanotubes, nanowires, nanorods, nanoneedles and nanoparticles grown on a reduced graphene substrate. The present invention enables the achievement of a synergy effect of the 3-dimensional nanostructure hybridizing 1-dimensional nanomaterials and 2-dimensional graphene. The nanostructure according to the present invention is excellent in flexibility and elasticity, and can easily be transferred to any substrate having a non-planar surface. Also, all junctions in nanomaterials, a metal catalyst and a graphene film system form the ohmic electrical contact, which allows the nanostructure to easily be incorporated into a field-emitting device.

    摘要翻译: 本发明涉及一种具有层叠在石墨烯衬底上的纳米材料的三维纳米结构; 更具体地说,涉及一种具有至少一种纳米材料的纳米结构的纳米结构,所述纳米材料选自在还原的石墨烯衬底上生长的纳米管,纳米线,纳米针和纳米线。 本发明能够实现3维纳米结构与1维纳米材料和2维石墨烯杂交的协同作用。 本发明的纳米结构体的柔软性和弹性优异,可以容易地转移到具有非平面的任何基材。 而且,纳米材料中的所有结,金属催化剂和石墨烯膜系统形成欧姆电接触,这允许纳米结构容易地结合到场发射器件中。

    3-DIMENSIONAL NANOSTRUCTURE HAVING NANOMATERIALS STACKED ON GRAPHENE SUBSTRATE AND FABRICATION METHOD THEREOF
    2.
    发明申请
    3-DIMENSIONAL NANOSTRUCTURE HAVING NANOMATERIALS STACKED ON GRAPHENE SUBSTRATE AND FABRICATION METHOD THEREOF 有权
    具有堆积在石墨基板上的纳米材料的三维纳米结构及其制造方法

    公开(公告)号:US20120121891A1

    公开(公告)日:2012-05-17

    申请号:US13322385

    申请日:2010-09-20

    摘要: The present invention relates to a 3-dimensional nanostructure having nanomaterials stacked on a graphene substrate; and more specifically, to a 3-dimensional nanostructure having at least one nanomaterial selected from nanotubes, nanowires, nanorods, nanoneedles and nanoparticles grown on a reduced graphene substrate. The present invention enables the achievement of a synergy effect of the 3-dimensional nanostructure hybridizing 1-dimensional nanomaterials and 2-dimensional graphene. The nanostructure according to the present invention is excellent in flexibility and elasticity, and can easily be transferred to any substrate having a non-planar surface. Also, all junctions in nanomaterials, a metal catalyst and a graphene film system form the ohmic electrical contact, which allows the nanostructure to easily be incorporated into a field-emitting device.

    摘要翻译: 本发明涉及一种具有层叠在石墨烯衬底上的纳米材料的三维纳米结构; 更具体地说,涉及一种具有至少一种纳米材料的纳米结构的纳米结构,所述纳米材料选自在还原的石墨烯衬底上生长的纳米管,纳米线,纳米针和纳米线。 本发明能够实现3维纳米结构与1维纳米材料和2维石墨烯杂交的协同作用。 本发明的纳米结构体的柔软性和弹性优异,可以容易地转移到具有非平面的任何基材。 而且,纳米材料中的所有结,金属催化剂和石墨烯膜系统形成欧姆电接触,这允许纳米结构容易地结合到场发射器件中。

    Method for preparing inorganic-nanostructure composite material, method for preparing carbon nanotube composite using same, and carbon nanotube composite prepared thereby
    3.
    发明授权
    Method for preparing inorganic-nanostructure composite material, method for preparing carbon nanotube composite using same, and carbon nanotube composite prepared thereby 有权
    制备无机纳米结构复合材料的方法,使用其制备碳纳米管复合材料的方法和由此制备的碳纳米管复合材料

    公开(公告)号:US09375751B2

    公开(公告)日:2016-06-28

    申请号:US13704611

    申请日:2011-11-29

    摘要: A method for manufacturing an inorganic-nano structure composite, a method for manufacturing a cabon nanotube composite by using the same, and a carbon nanotube composite manufactured by the same are provided. The method for manufacturing the inorganic-nano structure composite comprises a step of doping pentavalent elements on the nanostructure; and a step of growing the inorganic material from the doping points of the pentavalent elements by dipping the nanostructure on which the pentavalent elements are doped into a precursor solution of the inorganic material, and according to the present invention the pentavalent elements such as nitrogen are doped on the nanostructure and is utilized as the crystallization point of the inorganic material, instead of forming the separate coating layer to the organic-based nanostructure, or binding the binding group to the surface.

    摘要翻译: 提供一种无机纳米结构复合体的制造方法,使用该方法制造碳纳米管复合体的方法和由其制造的碳纳米管复合体。 制备无机纳米结构复合材料的方法包括在纳米结构上掺杂五价元素的步骤; 以及通过将掺杂有五价元素的纳米结构浸渍在无机材料的前体溶液中,从五价元素的掺杂点生长无机材料的步骤,根据本发明,将五价元素如氮掺杂 并且被用作无机材料的结晶点,而不是形成分离的涂层到有机基纳米结构,或将结合基团结合到表面。

    METHOD FOR PREPARING INORGANIC-NANOSTRUCTURE COMPOSITE MATERIAL, METHOD FOR PREPARING CARBON NANOTUBE COMPOSITE USING SAME, AND CARBON NANOTUBE COMPOSITE PREPARED THEREBY
    4.
    发明申请
    METHOD FOR PREPARING INORGANIC-NANOSTRUCTURE COMPOSITE MATERIAL, METHOD FOR PREPARING CARBON NANOTUBE COMPOSITE USING SAME, AND CARBON NANOTUBE COMPOSITE PREPARED THEREBY 有权
    制备无机纳米结构复合材料的方法,使用其制备碳纳米管复合材料的方法和制备的碳纳米管复合材料

    公开(公告)号:US20130089735A1

    公开(公告)日:2013-04-11

    申请号:US13704611

    申请日:2011-11-29

    IPC分类号: B05D1/18

    摘要: A method for manufacturing an inorganic-nano structure composite, a method for manufacturing a cabon nanotube composite by using the same, and a carbon nanotube composite manufactured by the same are provided. The method for manufacturing the inorganic-nano structure composite comprises a step of doping pentavalent elements on the nanostructure; and a step of growing the inorganic material from the doping points of the pentavalent elements by dipping the nanostructure on which the pentavalent elements are doped into a precursor solution of the inorganic material, and according to the present invention the pentavalent elements such as nitrogen are doped on the nanostructure and is utilized as the crystallization point of the inorganic material, instead of forming the separate coating layer to the organic-based nanostructure, or binding the binding group to the surface.

    摘要翻译: 提供一种无机纳米结构复合体的制造方法,使用该方法制造碳纳米管复合体的方法和由其制造的碳纳米管复合体。 制备无机纳米结构复合材料的方法包括在纳米结构上掺杂五价元素的步骤; 以及通过将掺杂有五价元素的纳米结构浸渍在无机材料的前体溶液中,从五价元素的掺杂点生长无机材料的步骤,根据本发明,将五价元素如氮掺杂 并且被用作无机材料的结晶点,而不是形成分离的涂层到有机基纳米结构,或将结合基团结合到表面。

    Nitrogen-doped transparent graphene film and manufacturing method thereof
    5.
    发明授权
    Nitrogen-doped transparent graphene film and manufacturing method thereof 有权
    氮掺杂透明石墨烯薄膜及其制造方法

    公开(公告)号:US08722442B2

    公开(公告)日:2014-05-13

    申请号:US13298166

    申请日:2011-11-16

    摘要: Provided is a transparent graphene film which is prepared by maintaining the primary reduced state of a graphene oxide thin film via chemical reduction, reducing the graphene oxide thin film with chemical vapor deposition, and doping nitrogen, thereby enhancing the conductivity and enabling the control of work function and a manufacturing method thereof. According to the present disclosure, a flexible, transparent, electrical conductivity-enhanced, and work function controllable graphene film can be large area processed and produced in large quantities so that can be applied in real industrial processes by forming a graphene oxide thin film on a substrate, performing the primary chemical reduction using a reducing agent, and performing further the secondary thermal reduction and nitrogen doping by injecting hydrogen and ammonia gas through chemical vapor deposition equipment.

    摘要翻译: 提供了透明的石墨烯膜,其通过化学还原保持氧化石墨烯氧化物薄膜的初级还原状态,通过化学气相沉积还原氧化石墨烯薄膜和掺杂氮来制备,从而提高导电性并且能够控制工作 功能及其制造方法。 根据本公开,柔性,透明,导电性增强和功函数可控石墨烯膜可以大面积加工和大量生产,从而可以在真实的工业过程中应用在石墨烯氧化物薄膜上形成 使用还原剂进行一次化学还原,通过化学气相沉积设备注入氢气和氨气进一步进行二次热还原和氮掺杂。

    NITROGEN-DOPED TRANSPARENT GRAPHENE FILM AND MANUFACTURING METHOD THEREOF
    6.
    发明申请
    NITROGEN-DOPED TRANSPARENT GRAPHENE FILM AND MANUFACTURING METHOD THEREOF 有权
    硝酸透明透明薄膜及其制造方法

    公开(公告)号:US20120161192A1

    公开(公告)日:2012-06-28

    申请号:US13298166

    申请日:2011-11-16

    摘要: Provided is a transparent graphene film which is prepared by maintaining the primary reduced state of a graphene oxide thin film via chemical reduction, reducing the graphene oxide thin film with chemical vapor deposition, and doping nitrogen, thereby enhancing the conductivity and enabling the control of work function and a manufacturing method thereof. According to the present disclosure, a flexible, transparent, electrical conductivity-enhanced, and work function controllable graphene film can be large area processed and produced in large quantities so that can be applied in real industrial processes by forming a graphene oxide thin film on a substrate, performing the primary chemical reduction using a reducing agent, and performing further the secondary thermal reduction and nitrogen doping by injecting hydrogen and ammonia gas through chemical vapor deposition equipment.

    摘要翻译: 提供了透明的石墨烯膜,其通过化学还原保持氧化石墨烯氧化物薄膜的初级还原状态,通过化学气相沉积还原氧化石墨烯薄膜和掺杂氮来制备,从而提高导电性并且能够控制工作 功能及其制造方法。 根据本公开,柔性,透明,导电性增强和功函数可控石墨烯膜可以大面积加工和大量生产,从而可以在真实的工业过程中应用在石墨烯氧化物薄膜上形成 使用还原剂进行一次化学还原,通过化学气相沉积设备注入氢气和氨气进一步进行二次热还原和氮掺杂。