Abstract:
The present invention discloses a substrate structure for supporting a thin film with specific temperature coefficient of resistance (TCR) thereon. The substrate structure includes a substrate composed of a borosilicate glass. The substrate further includes an interface layer of LaSiONx covering a top surface of the substrate. The substrate supports the thin film includes a platinum thin film thereon. The substrate structure further includes an adhesion anchoring seam disposed as a bonding seam interfacing the thin film to the substrate for securely attaching the thin film to the substrate therein. The bonding seam is disposed on a boundary edge of the thin film and includes a nickel-chromium alloy anchor seam disposed on the boding seam. In a preferred embodiment, the substrate structure includes a protective layer covering and protecting the substrate structure thereunder. In another preferred embodiment, the substrate structure further includes electrodes for electrically connecting to the thin film with the specific TCR for providing an electrical voltage thereto.
Abstract:
An ignition distributor of an automotive vehicle has a magnetic pick-up device mounted in the housing of the ignition distributor and including a magnetoresistor. The magnetoresistor is electrically connected to a primary ignition circuit in the ignition coil, which produces a high voltage when said magnetic pick-up device produces a voltage pulse output signal. A permanent magnetic plate is attached to the magnetoresistor and provides a magnetic field perpendicular to the direction of the current flow through the magnetoresistor. When each of the teeth of an armature rotated with the distributor shaft mounted in the ignition distributor passes the magnetic pick-up device to change temporarily the magnetic field applied to the magnetoresistor, the resistance of the magnetoresistor is correspondingly varied so that said magnetoresistor can produce a voltage pulse by the magnetoresistance effect, and open and close the primary ignition circuit for firing the spark plugs.
Abstract:
The present invention discloses a method for manufacturing a surface mount resistance-temperature-detector (RTD) on a substrate. The manufacture method includes the steps of (a) depositing a resistive thin film on a top surface of the substrate having a substantially linear temperature resistance coefficient (TCR) over a predetermined temperature range for temperature measurement; (b) patterning the resistive film into a plurality of resistive strips and a plurality of top terminals near two opposite edges on the top surface of the substrate with each resistive strip connected between two top terminals; (c) forming a bottom electrode on a bottom surface of the substrate underneath each of the top terminals; (d) depositing two edge conductive plates on edge surfaces of the substrate for connecting one of the top terminals to a bottom terminal thereunder; and (e) forming two surface mount solder electrodes with a conductive layer overlying the top terminal, the edge conductive plate and the bottom terminal provided for performing a surface-mount soldering operation thereon.
Abstract:
A method of forming electrode at the end surface of chip array resistors utilizes the vacuum metallization technology such as sputtering evaporating deposition or ion implanting accompanying a metal mask for forming electrode at the end surfaces of chip array resistors. A blank base can be used instead of a punch-through base which has to be used in conventional technology. The method disclosed in the present invention may greatly increase the productivity of the electrodes, and at the same time, the variation of resistance value of the chip array resistor is minimized and the product quality may be improved.
Abstract:
The present invention discloses a surface-mount resistance-temperature-detector (RTD) supported on a substrate. The surface-mount RTD includes a resistive strip disposed on a top surface of the substrate having a substantially linear temperature resistance coefficient (TCR) over a predetermined temperature range for measurement. The surface-mount RTD further includes two top terminals disposed on two opposite end on the top surface of the substrate wherein each of the top terminal connected to one end of the resistive strip. The surface-mount RTD further includes two bottom terminals disposed on a bottom surface of the substrate wherein each of the bottom terminals is disposed below one of the top terminals. The surface-mount RTD further includes two edge conductive plates each disposed on an edge surface of the substrate connected to one of the top terminals to a corresponding bottom terminal below. The surface-mount RTD further includes two surface mount solder electrodes wherein each solder electrode constituting a conductive layer overlying the top terminal, the edge conductive plate and the bottom terminal provided for performing a surface-mount soldering operation thereon. In a preferred embodiment, the surface-mount RTD further includes a passivation protective layer covering and protecting the resistive strip. In a preferred embodiment, the surface-mount RTD further includes two terminal-solder buffer pastes each disposed on top of the top surface terminal under the surface-mount solder electrode for buffering the top terminal and the solder electrode. In a preferred embodiment, the resistive strip is a platinum resistive strip having a temperature coefficient of resistance (TCR) ranging from 3000 to 3900 ppm/.degree.C.
Abstract:
The present invention discloses a resistive circuit. The resistive circuit includes a plurality of resistor networks disposed on a substrate. The resistor networks also includes a plurality of resistive circuit elements. The resistor networks further includes a plurality of termination contacts each connected to one of the resistive circuit elements. Each of the termination contacts is disposed on an edge of the substrate and each of the termination contacts is separated from a next termination contact by an edge trench disposed on the edge of the substrate whereby a distance across the edge trench defining a pitch between the termination contacts.