Abstract:
A control apparatus for controlling at least one heating, ventilation, and air conditioning (HVAC) system includes a microvalve, at least one intelligent controller, a local intelligent gateway in communication with the intelligent controller, a cloud platform in communication with the local intelligent gateway, and a local device configured to communicate through the cloud platform to the intelligent controller. The intelligent controller is configured to control one or more HVAC components, measure air conditioning system parameters including compressor discharge and suction pressure and compressor temperature of a compressor within the HVAC system, and air out, evaporator out, and condenser out temperatures, and superheat and subcooling, and input the measured air conditioning system parameters to the cloud platform to autonomously monitor air conditioning system health and real-time refrigerant charge levels.
Abstract:
A two-stage fluid control valve includes a first stage electronically switchable, bi-stable two-port valve movable between an open position and a leak-free closed position, and a second stage microvalve configured to control the flow of fluid through a fluid outlet of the two-stage fluid control valve when the first stage electronically switchable, bi-stable two-port valve is in the open position. The electronically switchable, bi-stable two-port valve is disposed between the second stage microvalve and a fluid inlet of the two-stage fluid control valve.
Abstract:
An electronically switchable, bi-stable two-port valve includes a sleeve, a first pole piece having air flow passages formed therethrough and a first wire-wound coil mounted therein and connected to a source of electrical power, a second pole piece having air flow passages formed therethrough and a second wire-wound coil mounted therein and connected to the source of electrical power, and a permanent magnet defining an armature and movably mounted between the first and second pole pieces. The first pole piece is mounted in a first end of the sleeve and the second pole piece is mounted in a second end of the sleeve.
Abstract:
An improved aerosol dispensing apparatus includes an aerosol container, a discharge piece, an actuator, a flow control canister valve assembly attached to the aerosol container, a battery, and an electronically controlled flow control valve electronically connected to the battery and in fluid communication with the flow control canister valve assembly. The aerosol container and the attached flow control canister valve assembly are further attached to the actuator and the actuator is mounted for slidable movement within the discharge piece. The flow control canister valve assembly is movable between an open position wherein a volume of an aerosol formulation is directed from the aerosol container through the flow control canister valve assembly to the electronically controlled flow control valve, and a closed position wherein the aerosol formulation is not permitted to flow through the flow control canister valve assembly to the electronically controlled flow control valve.
Abstract:
A microvalve includes a first plate having a surface defining an actuator cavity. A second plate has a surface that abuts the surface of the first plate and includes a displaceable member that is disposed within the actuator cavity for movement between a closed position, wherein the displaceable member prevents fluid communication through the microvalve, and an opened position, wherein the displaceable member does not prevent fluid communication through the microvalve. An actuator is connected to the displaceable member and has only one or two pairs of actuator ribs.
Abstract:
A system for controlling one or more structural appliances, such heating, cooling, and ventilation sensor systems utilizing cloud computing architecture, includes at least one intelligent controller, a local intelligent gateway in communication with the intelligent controller, and a cloud computing network in communication with the local intelligent gateway. A local device is operative to communicate through the cloud computing network to the intelligent controller.
Abstract:
A method of cleaning contaminants, including particulate contaminants, from a valve in a fluid system includes moving a valve flow control element of the valve from a first position to a second position in response to a change in a condition in the fluid system other than a change in superheat.
Abstract:
A method of bonding an electrical component to a substrate includes applying solder paste on to a substrate. Solder preform has an aperture is formed therethrough and is then urged into contact with the solder paste, such that solder paste is urged through the aperture. An electrical component is then urged into contact with the solder preform and into contact with the solder paste that has been urged through the aperture, thereby bonding the electrical component, the solder preform, and the substrate together to define a reflow subassembly.
Abstract:
A spool assembly configured for use in a two-stage proportional control valve in a fluid system includes a substantially cylindrical sleeve having an axially extending sleeve bore extending from an open first end to an open second end. A spool includes a spool bore that extends from an open first axial end to a closed second axial end and is slidably mounted within the sleeve bore. The spool further includes a first circumferentially extending groove defining a fluid flow path, a second circumferentially extending groove formed near a first end thereof, a third circumferentially extending groove formed near the second axial end thereof, a circumferentially extending pressure groove formed therein between the second axial end and the third circumferentially extending groove, and first, second, and third transverse fluid passageways formed through a side wall of the spool.
Abstract:
A method of controlling fluid flow through a heating, ventilating, air conditioning, and refrigeration (HVAC-R) system includes measuring temperature and pressure at an outlet of an evaporator of the HVAC-R system, wherein the evaporator is in fluid communication with a compressor, a condenser, an expansion device between the evaporator and the condenser, and a flow control valve between the compressor and the condenser, and measuring a sub-cooling temperature at an outlet of the condenser. The measured evaporator temperature and pressure data is sent to a first superheat processor, and the measured sub-cooling temperature data is send to a second superheat processor. A control signal to the expansion device from the first superheat processor and a control signal to the flow control valve from the second superheat processor are then simultaneously sent.