Abstract:
A returning spring of the electronic control throttle and a default spring for securing an initial opening degree (default opening degree) of the throttle valve have diameters different from each other, and both of the springs are held around a shaft of the throttle valve shaft and arranged between a gear attached to the throttle valve shaft and a wall portion of the throttle body. A shaft supporting gap of the throttle valve shaft is filled with an air leak preventing material, and a minimum opening degree for control of the throttle valve is set to a value larger than an amount of overshoot of the throttle valve occurring when opening degree of the throttle valve is changed from a maximum opening degree on control purpose of the throttle valve to the minimum opening degree.
Abstract:
The invention provides a throttle valve control apparatus provided with a throttle sensor which is in trouble at a low possibility and has a long service life, whereby an accurate output of a throttle opening degree can be obtained. The throttle valve control apparatus of an internal combustion engine has a throttle opening degree sensor constituted by a non-contact sensor using hall elements.
Abstract:
In a throttle body there are provided a throttle valve for controlling the flow of intake air in an internal combustion engine, and an electrically-driven actuator for actuating the throttle valve. A cover, which covers a receptacle portion, is attached to a side wall of the throttle body. The throttle assembly of the invention is provided with a potentiometer type sensor for detecting the degree of opening of the throttle valve, the sensor comprising a slider and a resistor, the slider being adapted to slide on the resistor and mounted to a peripheral surface of a driven gear so that a tip end thereof faces in a radial direction of a throttle valve shaft. The resistor is constituted by a curved resistor which confronts the slider in the said radial direction. A wall portion which holds the curved resistor is formed by molding integrally with the aforesaid cover.
Abstract:
A throttle device for an internal-combustion engine, in which, on one surface of a throttle body side wall is formed a mounting space for mounting a reduction gear mechanism which transmits the power of a motor to a throttle valve shaft; and a throttle sensor for detecting the throttle valve opening is built inside of the gear cover covering the mounting space, and is covered with a sensor cover. A shaft hole of a rotor of the throttle sensor is exposed out through the sensor cover. When the gear cover is attached to the side wall of the throttle body, one end of the throttle valve shaft fits in the rotor shaft hole by elastically deforming a fitting spring inserted in the shaft hole, thereby enabling downsizing, weight reduction, and simplification of assembly and wiring harness of the electronically controlled throttle device, and realization of stabilized operation and improved accuracy of the throttle sensor.
Abstract:
Disclosed is a throttle device for an internal-combustion engine, in which, on one side of the side wall of a throttle body, there are formed a space for mounting a reduction gear mechanism which transmits the power from a motor to a throttle valve shaft and a default opening setting mechanism for holding a throttle valve opening at a specific opening (default opening) when the ignition switch is in off position, and a gear cover mounting frame which edges the mounting space. The frame is formed lower than the mounting level of the reduction gear mechanism. A gear cover for covering the gear mounting space is attached on the frame. A stopper for defining the default opening and a stopper for defining the full-closed position of the throttle valve are juxtaposed so as to enable position adjustments in the same direction. These stoppers serve to stop a default lever and a throttle gear, thereby enabling downsizing, weight reduction, and rationalization of fabrication and adjustments of an electronically controlled throttle device.
Abstract:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
Abstract:
In an electronic control type throttle valve apparatus, a throttle valve position sensor includes a magnet provided at a throttle valve shaft and a hall element which output changes in accordance with the rotational deviation of the magnet. The hall element is housed within a sensor chip together with an amplifier circuit. In a control unit provided separately from the sensor chip, there are provided with an A/D conversion circuit for converting an analog output from the hall element through the amplifier circuit into a digital signal and a digital processing circuit for performing temperature compensation and zero-span adjustment of the hall element in a digital manner.
Abstract:
A throttle device for an internal-combustion engine, in which, on one surface of a throttle body side wall is formed a mounting space for mounting a reduction gear mechanism which transmits the power of a motor to a throttle valve shaft; and a throttle sensor for detecting the throttle valve opening is built inside of the gear cover covering the mounting space, and is covered with a sensor cover. A shaft hole of a rotor of the throttle sensor is exposed out through the sensor cover. When the gear cover is attached to the side wall of the throttle body, one end of the throttle valve shaft fits in the rotor shaft hole by elastically deforming a fitting spring inserted in the shaft hole, thereby enabling downsizing, weight reduction, and simplification of assembly and wiring harness of the electronically controlled throttle device, and realization of stabilized operation and improved accuracy of the throttle sensor.
Abstract:
A throttle device for an internal-combustion engine, in which, on one surface of a throttle body side wall is formed a mounting space for mounting a reduction gear mechanism which transmits the power of a motor to a throttle valve shaft; and a throttle sensor for detecting the throttle valve opening is built inside of the gear cover covering the mounting space, and is covered with a sensor cover. A shaft hole of a rotor of the throttle sensor is exposed out through the sensor cover. When the gear cover is attached to the side wall of the throttle body, one end of the throttle valve shaft fits in the rotor shaft hole by elastically deforming a fitting spring inserted in the shaft hole, thereby enabling downsizing, weight reduction, and simplification of assembly and wiring harness of the electronically controlled throttle device, and realization of stabilized operation and improved accuracy of the throttle sensor.
Abstract:
An electric drive actuator opens and closes a throttle valve to control an intake air flow rate of the internal combustion engine. A motor case contains a motor constituting the electric drive actuator and a gear case contains a gear mechanism to transmit power of the motor to the throttle valve shaft. A motor inserting port of the motor case is opened to the gear case. The motor is attached to the motor case by fastening a motor bracket to screw holes with three screws. Three sides forming a contour of the motor bracket are curved lines. A motor positioning portion being fitted to the three curved lines of the motor bracket to position the motor is formed in the gear case.