摘要:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
摘要:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
摘要:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
摘要:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
摘要:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
摘要:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
摘要:
The invention is intended to simplify a default mechanism of a throttle valve opening and closing device for the purpose of improving mountability of the device to a vehicle. When a motor generate no driving forces, a throttle valve is held in a position (1) by a return spring. In this position, gaps are formed between the throttle valve and a wall surface of an intake passage. Spherical recesses are formed in parts of the wall surface of the intake passage. In a position (2) where the throttle valve is opposed to the spherical recesses, the gaps are minimized in an operating range of the throttle valve.
摘要:
An air passage 2 is provided with an air passage groove 5 that supplies a required volume of air to the side downstream from the fully closed position of a valve body for control purposes. Further, a taper is formed in such a way that a predetermined volume of air can be supplied, even if positional variations have occurred to the valve body. This arrangement allows the volume of air required for the traveling of a car to be supplied, without increasing the number of parts, even if the valve body 3 has stuck downstream from the controlled area. This arrangement also permits a stable supply of air flow at the idle position of the valve body.
摘要:
Provided herein is a non-contact type rotational position sensor which is allowed to achieve intensification of parts, miniaturization, simplification of assembly, and higher accuracy. A rotor (a permanent magnet) is mounted on a rotational shaft. A Hall IC is interposed between an upper stator and a lower stator which are magnetic plates. The Hall IC is sensitive to magnetic flux density which varies according to a rotational position of the rotor. In a housing incorporating the rotor and the Hall IC is provided integrally a connector provided with an external connection terminal. Conductors for connecting external connection terminals and input/output terminals of the Hall IC are embedded into the housing by insert-molding. One ends of conductors are exposed at a fixed position where the input/output terminals are present. The terminals of the Hall IC are guided by a guide and joined to the one ends of conductors.
摘要:
An optical disc recording/reproducing apparatus is provided which can obtain the best recording quality. Data is recorded while tracking is displaced by gradually supplying an offset voltage (deviation value) to a tracking error signal, and then reproduction is performed on a recording area. The jitter value (reading state of address information) of biphase data generated from a reproduction RF signal is detected by a biphase jitter detector (20). Further, on the basis of the offset voltage value (tracking deviation) supplied to the tracking error signal and the detected jitter value of the biphase data, a CPU (14) determines an offset voltage value where the biphase data has the minimum jitter value, as a tracking deviation for obtaining the best reading state of data, and records the offset voltage value in memory (15).