摘要:
A cartridgeless data storage disk for a data storage disk drive has a latent irradiance marker. A light source illuminates the marker and the marker emits irradiance as phosphorescence. A photosensor detects the emitted irradiance, and the decay time is determined. The decay time is checked to provide identification of different types or generations of cartridgeless data storage disks.
摘要:
An improved disk cartridge has a light emitter and a light detector and a baffle plate disposed between the emitter and the detector. The detector functions to denote the presence of reflected light from a retroreflective marker disposed on a disk cartridge. The baffle plate acts as a filter to minimize the amount of light reflected from sources other than the retroreflective marker that is received by the detector. By minimizing the amount of light seen by the detector from sources other than the retroreflective marker, the retroreflective marker on a disk cartridge can be placed in close proximity to the emitter and detector. It is advantageous for a disk drive of compact design, such as those within a lap top computer.
摘要:
A head loading mechanism for a removable cartridge disk drive comprises a support base fixedly mounted in the drive, and a moveable member movably attached to the support base via a pair of elongate flexures. The moveable member has a ramped surface adapted to engage a suspension arm at the distal end of an actuator. A read/write head is mounted on the suspension arm. The moveable member moves upon the flexures in tandem with the actuator as it moves toward and away from the edge of a disk inserted in the drive. The moveable member carries the suspension arm of the actuator to the edge of the disk, at which point the suspension arm can ride up and down the ramped surface of the moveable member in order to load the read/write head onto the surface of the disk and then subsequently to unload the read/write head from the disk.
摘要:
An information storage apparatus uses an optical data element (nano-grating) with features that are smaller than the wavelength of light. The optical data element alters one or more properties of the light such as reflected amplitude, polarization, phase, wavelength, and spatial orientation to encode data in a massively multi-level format.
摘要:
An optical disk (10) includes several tracks (21-23, 121-125) that each include a series of optical data elements (29, 39). Each optical data element includes several reflective surfaces (31-34, 41-44) with respective different orientations that represent stored information. A detection system (210) directs a beam from a laser (217) onto successive optical data elements. The multiple reflective surfaces of each optical data element produce multiple reflected sub-beams that are imaged onto respective portions of a detector (219, 501, 541). The position of each sub-beam on the corresponding portion of the detector is determined, to thereby identify the orientation of the corresponding reflective surface and thus the stored information represented by that surface.
摘要:
A storage media is disclosed and comprises a storage body and a readable indelible mark formed in the body such that portions thereof are indelibly altered. The mark is read by writing first data to the body in the region of the mark, and reading second data from the body in such region. The written first data is not accepted where the portions of the body are indelibly altered. Accordingly, the read second data corresponds to the written first data with segments thereof missing. The missing segments of the first data correspond to the portions of the body indelibly altered. In a preferred embodiment, the storage media comprises a magnetic rotatable disk having a substantially planar substrate and a magnetizable layer deposited thereon. The reading and writing are therefore performed magnetically.
摘要:
A data storage disk having a latent illuminance discrimination marker for determining whether the data storage disk is suitable for use in a disk drive. A light source illuminates the marker and the marker emits illuminance, preferably as phosphorescence. A detector detects the emitted illuminance, and a predetermined characteristic of the marker in the frequency domain is determined. The frequency domain response may be either a phase response or an amplitude response, or both. The frequency domain response provides identification of different types or generations of data storage disks or provides a secure keying mechanism for authorized access to proprietary software.
摘要:
A storage media is disclosed and comprises a storage body and a readable indelible mark formed in the body such that portions thereof are indelibly altered. The mark is read by writing first data to the body in the region of the mark, and reading second data from the body in such region. The written first data is not accepted where the portions of the body are indelibly altered. Accordingly, the read second data corresponds to the written first data with segments thereof missing. The missing segments of the first data correspond to the portions of the body indelibly altered. In a preferred embodiment, the storage media comprises a magnetic rotatable disk having a substantially planar substrate and a magnetizable layer deposited thereon. The reading and writing are therefore performed magnetically.
摘要:
A data storage cartridge for a data storage disk drive has a latent illuminance marker. A light source illuminates the marker and the marker emits illuminance as phosphorescence. A photosensor detects the emitted illuminance, and the decay time is determined. The decay time is checked to provide identification of different types or generations of data storage cartridges.
摘要:
A cartridge for a data storage disk drive has a thin retroreflective marker. Light from a source is reflected from the marker almost exactly on its incident path. A planar light shaping optical structure such as a holographic light shaping diffuser (LSD) ruled or blazed diffraction grating, holographic diffraction grating, binary optics or holographic diffraction grating directs light to the detector. The LSD has degrees of angular diffusion in different orthogonal axes. This property makes possible unique identification of different types of cartridges.