Abstract:
A method of forming a metal silicide layer includes sequentially forming a metal layer and a first capping layer on a substrate, performing a first heat treatment on the substrate to cause the substrate to react to the metal layer, removing the first, capping layer and an unreacted metal layer, forming a second capping layer on the substrate, and performing a second heat treatment on the substrate to form a metal silicide layer on the substrate.
Abstract:
An EEPROM includes a semiconductor substrate and a device isolation region defining first, second and third active regions in the semiconductor substrate. The EEPROM also includes at least one first insulation region in at least one first trench in the first active region. A floating gate insulation layer is disposed on the at least one first insulation region and the first, second and third active regions and a floating gate conduction layer is disposed on the floating gate insulation layer. Impurity-containing regions may be disposed in each of the first, second and third active regions at respective sides of the floating gate conduction layer. The floating gate insulation layer may include at least one thinned portion proximate the at least one first insulation region, which may aid Fowler-Nordheim tunneling at this site.
Abstract:
In one aspect, an electrically erasable and programmable read-only memory (EEPROM) is provided. The EEPROM includes a semiconductor substrate including spaced apart first, second and third active regions, a common floating gate traversing over the first through third active regions, source/drain regions formed in the third active region on opposite sides of the floating gate, a first interconnect connected to the first active region, a second interconnect connected to the second active region, and a third interconnect connected to either one of the source/drain regions.
Abstract:
The present invention is a method for fabricating a semiconductor device having an elevated source/drain scheme which includes the steps of: forming a first photoresist film on a top surface of a semiconductor substrate; forming a second photoresist film on the first photoresist film; forming the second photoresist film; forming a second photoresist film pattern so that a portion corresponding to a field region has a first opening and a region in which a gate electrode is to be formed has a second opening by exposing the second photoresist film to a first light, thereby developing the second photoresist film; forming a first photoresist film pattern so that a portion corresponding to the field region has a third opening by exposing the first photoresist film to a second light, thereby developing the first photoresist film; forming a first trench at the first opening position and a second trench at the second opening position on the semiconductor substrate by etching the semiconductor substrate using the first photoresist film pattern and the second photoresist film pattern as a mask; filling the first trench and the second trench with an oxide film; removing the oxide film in the second trench; forming a gate oxide film on inner walls of the first and second trenches and on the top surface of the semiconductor substrate; forming a gate electrode on a top surface of the second trench by forming a conductive layer on a top surface of the gate oxide film and patterning the gate oxide film; and forming a source junction and a drain junction by implanting impurity ions in the semiconductor substrate at both sides of the gate electrode.
Abstract:
An electrically erasable and programmable read-only memory (EEPROM) is provided. The EEPROM includes a semiconductor substrate including spaced apart first, second and third active regions, a common floating gate traversing over the first through third active regions, source/drain regions formed in the third active region on opposite sides of the floating gate, a first interconnect connected to the first active region, a second interconnect connected to the second active region, and a third interconnect connected to either one of the source/drain regions.
Abstract:
A method of programming an EEPROM including a first active region, a second active region and a third active region located separately in a semiconductor substrate, a common floating gate above and intersecting the active regions, first impurity regions located at both sides of the common floating gate in the first active region, second impurity regions located at both sides of the common floating gate in the second active regions and third impurity region, located at both sides of the common floating gate in the third active region. The method includes: applying a programming voltage to the first impurity regions in the first active region and the third impurity regions in the third active region; and applying a ground voltage to the second impurity regions in the second active region.
Abstract:
An electrically erasable and programmable read-only memory (EEPROM) is provided. The EEPROM includes a semiconductor substrate including spaced apart first, second and third active regions, a common floating gate traversing over the first through third active regions, source/drain regions formed in the third active region on opposite sides of the floating gate, a first interconnect connected to the first active region, a second interconnect connected to the second active region, and a third interconnect connected to either one of the source/drain regions.
Abstract:
In one aspect, an electrically erasable and programmable read-only memory (EEPROM) is provided. The EEPROM includes a semiconductor substrate including spaced apart first, second and third active regions, a common floating gate traversing over the first through third active regions, source/drain regions formed in the third active region on opposite sides of the floating gate, a first interconnect connected to the first active region, a second interconnect connected to the second active region, and a third interconnect connected to either one of the source/drain regions.