Abstract:
One aspect relates to a medical implant, for example, implantable stimulation electrode, having a tight substrate and a porous contact region. One aspect also relates to a lead of a cardiac pacemaker having an implantable stimulation electrode and to a method for manufacturing a medical implant, for example, an implantable stimulation electrode.A medical implant according to one aspect is characterized in that the implant includes a sintered body with graduated porosity.
Abstract:
One aspect relates to a method for the manufacture of an electrical bushing for use in a housing of an active implantable medical device. The electrical bushing includes an electrically insulating base body and an electrical conducting element. The conducting element is set-up to establish, through the base body, an electrically conducting connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The conducting element includes at least one cermet.One aspect provides the method including forming a base body green compact having a through-opening that extends through the base body green compact from a ceramic slurry, generating at least one conducting element green compact from a cermet slurry, producing a bushing blank by combining the conducting element green compact and the base body green compact, and separating the bushing blank into two electrical bushings.
Abstract:
One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The conducting element is set-up to establish, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet. The cermet has a metal fraction in a range from 30% by volume to 60% by volume.
Abstract:
One aspect relates to a housing for an active implantable medical device, whereby the housing, at least parts thereof, includes an electrically insulating ceramic material, and has at least one electrically conductive conducting element, whereby the at least one conducting element is set up to establish at least one electrically conductive connection between an internal space of the housing and an external space.One aspect provides the at least one conducting element to include at least one cermet, whereby the housing and the at least one conducting element are connected in a firmly bonded manner.
Abstract:
One aspect relates to an electrical bushing for use in a housing of an implantable medical device. The electrical bushing includes at least one electrically insulating base body and at least one electrical conducting element. The conducting element establishes, through the base body, at least one electrically conductive connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The at least one conducting element includes at least one cermet. The at least one conducting element includes at least one electrically conductive connecting layer.
Abstract:
A wire includes a first wire section is of a first material and a second wire section is of a second material different from the first material. A joining section is adjacent both the first and second wire sections, the joining section comprising a first end and a second end. The first end of the joining section is of a material that is compatible with the first material of the first wire section and the second end of the joining section is of a material that is compatible with the second material of the second wire section.
Abstract:
One aspect relates to a method for producing an electrical bushing for an implantable device, an electrical bushing, and an implantable device. The method according to one embodiment includes forming a base body from a ceramic slurry and introducing a bushing conductor made of a metal powder, metal slurry, cermet powder and/or cermet slurry into the base body. The metal fraction in the bushing conductor is provided to decrease towards the base body. It includes sintering the green blank that includes the base body and the bushing conductor.
Abstract:
One aspect relates to a method for the manufacture of an electrical bushing for use in a housing of an active implantable medical device. The electrical bushing includes an electrically insulating base body and an electrical conducting element. The conducting element is set-up to establish, through the base body, an electrically conducting connection between an internal space of the housing and an external space. The conducting element is hermetically sealed with respect to the base body. The conducting element includes at least one cermet.One aspect provides the method including forming a base body green compact having a through-opening that extends through the base body green compact from a ceramic slurry, generating at least one conducting element green compact from a cermet slurry, producing a bushing blank by combining the conducting element green compact and the base body green compact, and separating the bushing blank into two electrical bushings.
Abstract:
One aspect relates to a medical implant, for example, implantable stimulation electrode, having a tight substrate and a porous contact region. One aspect also relates to a lead of a cardiac pacemaker having an implantable stimulation electrode and to a method for manufacturing a medical implant, for example, an implantable stimulation electrode.A medical implant according to one aspect is characterized in that the implant includes a sintered body with graduated porosity.
Abstract:
One aspect relates to a method for producing an electrical bushing for an implantable device, a corresponding electrical bushing, and a corresponding implantable device. The method according to one embodiment is characterized in that a green blank is produced and sintered from an electrically insulating base body green blank made of a ceramic slurry or powder and at least one electrically conductive bushing body green blank made of a cermet material. The at least one bushing body green blank is inserted into a bushing opening of the base body green blank to form a composite green blank, a shape of the at least one bushing body green blank and a shape of the at least one bushing opening are complementary to each other at least in sections thereof and prevent slippage of the bushing body green blank through the bushing opening. The composite green blank is sintered while applying a force that keeps the bodies together.