Abstract:
An imaging system (50) for providing vehicle security and convenience features that employs face recognition software to identify and track a person. The system (50) employs infrared emitters (30) that emit an infrared signal along a predetermined field-of-view, and an infrared sensor (34), such as a CMOS sensor used as a video signal array, that receives reflected infrared illumination from objects in the field-of-view. A processor (52) including the face recognition software, is employed to detect human faces to identify and track the person. Once a face is detected, it can be compared to a data base to identify the person. Various applications for the imaging system (50) to provide driver convenience and security include determining driver identification as the driver approaches the vehicle, determining if a potential thief is in the vehicle by face recognition, providing driver seat adjustment, rear and side mirror adjustment and steering wheel adjustment, providing vehicle speed control, automatically starting the vehicle, etc.
Abstract:
A system and method are described that use impulse radio technology to enhance the capabilities of a robot. In one embodiment, a system, a robot and a method are provided that use the communication capabilities of impulse radio technology to help a control station better control the actions of the robot. In another embodiment, a system, a robot and a method are provided that use the communication, position and/or radar capabilities of impulse radio technology to help a control station better control the actions of a robot in order to, for example, monitor and control the environment within a building.
Abstract:
Direct-path-signal (DPS) detector circuitry includes a standard deviation calculator circuitry configured to determine a standard deviation of a plurality of data values within a data frame. The data frame corresponds to a radio-frequency signal received via a communication link. The DPS detector circuitry also includes a threshold circuitry configured to detect a direct-path signal depending on the relative values of the standard deviation and a threshold signal.
Abstract:
A system for providing the identification and tracking of motor vehicles that includes a probe device that transmits a radio frequency modulated signal to a transponder unit that is located within a vehicle registration tag of a vehicle. The transponder unit responds to the probe unit's request by transmitting its own radio frequency modulated signal containing any information requested by the probe device.
Abstract:
A probabilistic or stochastic artificial neuron in which the inputs and synaptic weights are represented as probabilistic or stochastic functions of time, thus providing efficient implementations of the synapses. Stochastic processing removes both the time criticality and the discrete symbol nature of traditional digital processing, while retaining the basic digital processing technology. This provides large gains in relaxed timing design constraints and fault tolerance, while the simplicity of stochastic arithmetic allows for the fabrication of very high densities of neurons. The synaptic weights are individually controlled by a backward error propagation which provides the capability to train multiple layers of neurons in a neural network.
Abstract:
A system and method for determining angular offset of an impulse radio transmitter using an impulse radio receiver coupled to two antennae. The antennae are separated by some known distance, and, in one embodiment, one antennae is coupled to the radio with cable delay. Impulse signals from the antennae are measured to determine the time difference of arrival of one such signal received by one antenna compared to that of the other antenna. Time differential is measured by autocorrelation of the entire impulse radio scan period, by detecting the leading edges of both incoming signals or various combinations of these methods. Using a tracking receiver, the pulses may be continuously tracked thus providing real time position information.
Abstract:
An imaging system (50) for providing vehicle safety features that employs face recognition software to identify and track a person. The system (50) employs infrared emitters (30) that emit an infrared signal along a predetermined field-of-view, and an infrared sensor (34), such as a CMOS sensor used as a video signal array, that receives reflected infrared illumination from objects in the field-of-view. A processor (52) including the face recognition software, is employed to detect human faces to identify and track the person. Once a face is detected, it can be compared to a data base to identify the person. Various applications for the imaging system (50) for providing vehicle safety features include identifying the driver or passenger for personalizing the vehicle's airbags, providing pre-crash collision avoidance, providing blind spot detection, providing vehicle crash recording, and providing a warning signal if the driver appears drowsy.
Abstract:
A digital phase error detector for locking to a color subcarrier signal in an analog video signal. The digital phase error detector includes a digitizer responsive to a sample clock which generates a first digital data stream from the analog video signal. Filtering circuitry filters the first digital data stream to generate a second data stream by substantially eliminating DC offset of the color subcarrier signal digitized by the digitizer. A mixer mixes the second digital data stream to generate a third digital data stream representing sum and difference frequencies of a product of the color subcarrier signal and a reference clock. An accumulator accumulates this product which represents a phase error between the color subcarrier signal and the reference clock. A voltage controlled oscillator is responsive to this phase error for generating the sample clock.
Abstract:
A system and method are described that use impulse radio technology to enhance the capabilities of a robot. In one embodiment, a system, a robot and a method are provided that use the communication capabilities of impulse radio technology to help a control station better control the actions of the robot. In another embodiment, a system, a robot and a method are provided that use the communication, position and/or radar capabilities of impulse radio technology to help a control station better control the actions of a robot in order to, for example, monitor and control the environment within a building.
Abstract:
A method and apparatus that compensates for line tilt in a video line scrambled by a line spin scrambling technique. Line spin scrambling provides relatively secure transmission of video signals, with a modest amount of complexity and cost. However, line spin scrambling suffers from certain distortions that corrupt the unscrambled video signal. One of these distortions is caused by line tilt, and results in a chaotic hashing of luminance striations in a received picture. The method of the invention includes the steps of measuring the amplitude of the line tilt introduced into a video signal, generating a complementary ramp based on the measured amplitude, and summing the complementary ramp with the spun video line.