Abstract:
A satellite communications method for communicating information from a base station, via a satellite, to one or more user terminals via a single channel of a forward link.
Abstract:
A method beginning at (10) is provided for creating high-fidelity visible coloring from infrared images of a scene under surveillance. The infrared images captured at (12) are analyzed at (14) to determine if an object, such as a face, is identifiable within the image. If an object is identifiable at (16) the object features are compared to a plurality of stored object features at (20). If there is a match at (22), the color characteristics of the object are obtained at (24) and the object is colored at (26) based on the stored database feature information. If there is no match at (22) or identifiable object at (16) and object color cannot be identified at (23), the image is analyzed at (28) to determine if a pattern, such as clothing, is identifiable within the image. If a pattern is identifiable at (30), the color characteristics of the pattern are obtained at (34) and the pattern is colored at (36) according to infrared reflectance characterization in conjunction with the stored pattern information. If no pattern is identifiable at (30), the non-pattern and non-feature containing portions of the image are colored at (38) according to infrared reflectance characterization.
Abstract:
An imaging system (50) for providing vehicle safety features that employs face recognition software to identify and track a person. The system (50) employs infrared emitters (30) that emit an infrared signal along a predetermined field-of-view, and an infrared sensor (34), such as a CMOS sensor used as a video signal array, that receives reflected infrared illumination from objects in the field-of-view. A processor (52) including the face recognition software, is employed to detect human faces to identify and track the person. Once a face is detected, it can be compared to a data base to identify the person. Various applications for the imaging system (50) for providing vehicle safety features include identifying the driver or passenger for personalizing the vehicle's airbags, providing pre-crash collision avoidance, providing blind spot detection, providing vehicle crash recording, and providing a warning signal if the driver appears drowsy.
Abstract:
A communication system for mobile platforms includes mobile platforms with transceivers identified by Internet Protocol (IP) addresses. A satellite relays a forward link from a ground station to the mobile platforms. The forward link contains IP packet data that is modulated by variable length orthogonal (VLO) spreading codes and that has different information data rates. The VLO spreading code for each IP packet is selected to optimize a desired link margin of the IP packet that is received by the addressed transceiver. The IP packets can also be modulated using a pseudonoise (PN) spreading code. Forward error correction (FEC) may also be applied. The transceivers include a feedback circuit that generates an Eb/No estimate.
Abstract:
A vehicle occupant airbag deployment system (50) that detects, identifies and tracks a person (16) in the passenger seat (18) of a vehicle (12), and provides a signal for no fire, soft fire or hard fire of the airbag (20) depending on the location of the person (16) in a crash event. The airbag deployment system (50) employs infrared emitters (30) that emit an infrared signal towards the passenger seat (18) of the vehicle (12) and an infrared detector (34) that receive reflected radiation from objects in the seat (18). Processing circuitry (52), including face recognition software, is employed to detect human face features to provide the necessary detection and tracking of the person (16). In this manner, the system (50) prevents the airbag (20) from firing if the seat (18) is not occupied by a person (16), prevents the airbag (20) from firing if a person (16) is detected, but is too close to the airbag (20), and provides a soft fire if a person (16) is detected, but is within a soft fire range of the airbag (20).
Abstract:
A superluminescent light-emitting diode in which the spectral width of the output increases with increasing optical output power, thereby allowing the generation of high optical output powers with a broad frequency spectrum that is desirable for some applications of the superluminescent diodes. This desirable characteristic is obtained by structuring the diode to produce a non-uniform gain profile across its active layer. Alternative approaches for achieving the non-uniform gain profile include varying the thickness of the active layer, and varying the current density by employing an asymmetrical channel configuration or an asymmetrical electrical contact strip.
Abstract:
A digital Intermediate Frequency (IF) QAM receiver 300 is provided which yields an improved SNR. The digital IF QAM receiver 300 eliminates the integration step (260, 265) and low pass filters (250, 255) of a standard digital QAM receiver 200. Instead, the digital IF QAM receiver 300 mixes the received signal with a an intermediate frequency (IF) local oscillator (LO) 325. After mixing with the IF LO 325, each channel is band pass filtered (355, 357), and then converted from analog to a digital signal (360, 362). The digital signal is then demultiplexed (365, 367) into a plurality of streams of digital pulses. The stream with the maximum average power is then selected by a select stream processor (370, 372). The selected stream is time aligned to conform to a symbol period by a stream timing alignment processor (375, 377). The aligned stream for both the I and Q channels is sent to a maximum likelihood decision mapping processor 390 which determines the respective bit code.
Abstract:
A method of optimizing data compression in a data compression process. A single compressor is provided for performing video signal data compressor operations (122). The compressor receives a video signal that includes spatial and temporal data from a plurality of video signal frames. The compressor performs motion compensation (124, 126) on the plurality of video frames by simultaneously registering the plurality of video signal frames to produce a plurality of motion vectors. A performance metric including energy compaction parameters is then generated from the plurality of motion vectors (128). The performance metric is applied to the motion compensation step (124, 126) to optimize rate distortion performance in the motion compensation step and in subsequent data compression process steps.
Abstract:
A low loss optical waveguide is provided by taking a silicon substrate with a silicon dioxide waveguide thereon and depositing lead on the air interface surface of the silicon dioxide. The lead is then oxidized and diffused into the silicon dioxide creating a high optical quality, high index region at the air interface of the waveguide. This allows transmitted waveguide light energy directed into the silicon dioxide to be transmitted in the lead oxide diffused portion of the waveguide, keeping the energy away from the lossy silicon substrate, and thereby providing a low loss planar waveguide.
Abstract:
An imaging system (50) for providing vehicle security and convenience features that employs face recognition software to identify and track a person. The system (50) employs infrared emitters (30) that emit an infrared signal along a predetermined field-of-view, and an infrared sensor (34), such as a CMOS sensor used as a video signal array, that receives reflected infrared illumination from objects in the field-of-view. A processor (52) including the face recognition software, is employed to detect human faces to identify and track the person. Once a face is detected, it can be compared to a data base to identify the person. Various applications for the imaging system (50) to provide driver convenience and security include determining driver identification as the driver approaches the vehicle, determining if a potential thief is in the vehicle by face recognition, providing driver seat adjustment, rear and side mirror adjustment and steering wheel adjustment, providing vehicle speed control, automatically starting the vehicle, etc.