摘要:
A collector for the results of a pipelined central processing unit of a digital data processing system. The processor has a plurality of execution units, with each execution unit executing a different set of instructions of the instruction repertoire of the processor. The execution units execute instructions issued to them in order of issuance by the pipeline and in parallel. As instructions are issued to the execution units, the operation code identifying each instruction is also issued in program order to an instruction execution queue of the collector. The results of the execution of each instruction by an execution unit are stored in a result stack associated with each execution unit. Collector control causes the results of the execution of instructions to program visible registers to be stored in a master safe store register in program order which is determined by the order of instructions stored in the instruction execution stack on a first-in, first-out basis. The collector also issues write commands to write results of the execution of instructions into memory in program order.
摘要:
Method and apparatus for producing the residue of the product of a multiplier and a multiplicand where the multiplier, multiplicand and product are residues with respect to a check base m, and where m=(2.sup.b -1) and b is the number of bits in a residue. An addressable memory device has at least 2 2(b-1) memory locations with each memory location having an address of 2 (b-1) bits. The address of each memory location can be considered as having two components each of (b-1) bits. The residue stored at each addressable location of the device is the residue of the product of the two components of its address. In response to each address being applied to the memory device, the residue of the product of the two components stored at the addressed memory location is read out of the device. The lower order (b-1) bits of the multiplier is applied to the device if the most significant bit of the multiplier is a logical zero. If the most significant bit of the multiplier is a logical one, the complement of the lower order (b-1) bits is applied and forms one component of the address of a memory location of the device. Similarly, the value of the most significant bit of the multiplicand determines whether the lower order (b-1) bits of the multiplicand or their complements form the other component of the address applied to the memory device. The residue read out of the addressed location is complemented to produce the residue of the product stored at the addressed memory location if and only if one of the most significant bits of the multiplier and multiplicand is a logical one, otherwise the residue read out of the memory device is the residue of the product of the multiplier and the multiplicand.
摘要:
A processor (10) has a data cache unit (16) wherein the data cache unit includes a memory management unit (MMU) (32). The MMU contains memory locations within transparent translation registers (TTRs), an address translation cache (40), or a table walk controller (42) which store or generate cache mode (CM) bits which indicate whether a memory access (i.e., a write operation) is precise or imprecise. Precise operations require that a first write operation or bus write instruction be executed with no other operationsnstructions executing until the first operation/instruction completes with or without a fault. Imprecise operations are operations/instruction which may be queued, partially performed, or execution simultaneously with other instructions regardless of faults or bus write operations. By allowing the logical address to determine whether the bus write operation is precise or imprecise, a large amount of system flexibility is achieved.
摘要:
A processor (10) has two modes of operation. One mode of operation is a normal mode of operation wherein the processor (10) accesses user address space or supervisor address space to perform a predetermined function. The other mode of operation is referred to as a debug, test, or emulator mode of operation and is entered via an exception/interrupt. The debug mode is an alternate operational mode of the processor (10) which has a unique debug address space which executes instructions from the normal instruction set of the processor (10). Furthermore, the debug mode of operation does not adversely affect the state of the normal mode of operation while executing debug, test, and emulation commands at normal processor speed. The debug mode is totally non-destructive and non-obtrusive to the "suspended" normal mode of operation. While in debug mode, the existing processor pipelines, bus interface, etc. are utilized.