Abstract:
The present invention addresses the problem of simplifying the provision of microwave lenses in particular, but not exclusively, when microwave lenses are disposed in the close proximity of antenna elements (3) in devices (1; 1.1) for transmitting and/or receiving microwave radiation. According to the invention, a microwave lens is formed from a droplet (11; 11.1) of material that refract microwave radiation. The droplet (11; 11.1) assumes a predetermined shape in a liquid state, said shape depending chiefly on external limitations, the volume of material used and the properties of the material. The droplet (11; 11.1) is then allowed to solidify while retaining said assumed shape. The invention relates to devices and methods relating to this simplified provision of microwave lenses.
Abstract:
A diode device with a low or negligible threshold voltage includes at least one field effect transistor, the gate of the field effect transistor being connected to the drain of the field effect transistor. The threshold voltage of the diode device is approximately of the same magnitude as the potential of the gate of the field effect transistor forming part of the diode device.
Abstract:
A frequency tunable signal source (100) with first (105) and a second (115, 315) oscillators, each of which outputs a signal at a fundamental frequency (f1, f2) and at least one signal at a harmonic frequency (f1′, f2′) and a mixer (120) with first (121) and second (122) input ports and an output port (124), and a control unit (110) which controls switches (S1, S2, S3, S4), by means of which two of said signals (f1, f2, f1′, f2′) are switchably connected to the first input port. The other two signals are switchably to the other input port, with one switch (S1, S2, S3, S4) for each signal (f1, f2, f1′, f2′). There is also comprised a third oscillator (125), with an output signal connected to a third input port (123) of the mixer (120). At least one of the oscillators (105, 115, 315, 125) is a VCO, a Voltage Controlled Oscillator.
Abstract:
A frequency tunable signal source (100) with first (105) and a second (115, 315) oscillators, each of which outputs a signal at a fundamental frequency (f1, f2) and at least one signal at a harmonic frequency (f1′, f2′) and a mixer (120) with first (121) and second (122) input ports and an output port (124), and a control unit (110) which controls switches (S1, S2, S3, S4), by means of which two of said signals (f1, f2, f1′, f2′) are switchably connected to the first input port. The other two signals are switchably to the other input port, with one switch (S1, S2, S3, S4) for each signal (f1, f2, f1′, f2′). There is also comprised a third oscillator (125), with an output signal connected to a third input port (123) of the mixer (120). At least one of the oscillators (105, 115, 315, 125) is a VCO, a Voltage Controlled Oscillator.
Abstract:
A method of creating a capacitor in an integrated circuit. According to a basic version of the invention the capacitor uses intensive fringing fields to create a capacitance. This is achieved by creating a capacitor with vertical overlapping conducting electrodes between two planes of the integrated circuit, instead of plates parallel to the planes. A capacitor according to the invention can additionally comprise horizontal, i.e. parallel plates. A capacitor according the method is also disclosed.
Abstract:
The present invention relates to a frequency multiplying arrangement (10) comprising a transistor arrangement with a first and a second transistor (T1, T2), each with an emitter (e), a base (b) and a collector (c), a voltage (current) source, output means for extracting an output signal (Vout) comprising a multiplied output frequency harmonic of an input signal (Vin), and impedance means. The impedance means comprises a first impedance means (3) connected to the collectors of the respective transistors, the transistors operating in phase opposition, and the waveform of the current for each transistor is half wave shaped such that the transistor is conducting only the half of each period, and the output signal (Vout) is extracted (P) between the first impedance means (3; 31; 32; 33; 34; 35) and the collectors (c) of the transistors.