摘要:
A conductive propylene resin composition, which is used for packaging and automatic feeding of parts which is unlikely be electrically charged, which is resistive to a baking treatment and which does not produce wastes and can reduce a material cost and a processing cost, is provided.The composition contains of(1) a % by weight of a propylene polymer with a portion having not less than 95% by weight of crystallinity that occupies not less than 60% by weight of the propylene polymer, and contains not more than 20% by weight of ethylene;(2) b % by weight of a propylene random copolymer which has a tensile elongation of not less than 100% and contains 1 to 7% by weight of ethylene; and(3) c % by weight of an electrically conductive filler, wherein the following relationships are satisfied: a+b+c=100, 0.5≦a/b≦2.0 and 10≦c≦30.
摘要翻译:提供一种导电丙烯树脂组合物,其用于包装和自动进料不太可能带电的部件,其耐烘烤处理并且不产生废物并且可以降低材料成本和加工成本。 该组合物含有(1)重量%的丙烯聚合物,其部分具有不小于丙烯聚合物的60重量%以上的不小于95重量%的结晶度,并且不超过20重量% 乙烯重量;(2)b重量%的丙烯无规共聚物,其拉伸伸长率不小于100%并含有1至7重量%的乙烯; 和(3)c%的导电填料,其中满足以下关系:a + b + c = 100,0.5 <= a / b <= 2.0和10 <= C&LE; 30。
摘要:
The present invention provides a microporous polyolefin membrane of high permeability and novel structure, and also provides a method of producing the same, wherein its average pore size is gradually decreases from at least one membrane surface towards its center. The method of producing the microporous polyolefin membrane comprises the steps of extruding the solution, composed of 10 to 50 weight % of (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing this polyolefin and 50 to 90 weight % of a solvent, into a gel-like formed article and removing the solvent therefrom, wherein a treatment step with a hot solvent is incorporated.
摘要:
A microporous polyolefin membrane is formed by fine fibrils, comprising (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing component (A), connected to each other, and has micropores of 0.05 to 5 &mgr;m in average pore size and crystal lamellas of component (A) or (B) being in a specific orientation state. The membrane is produced by extruding a solution of component (A) or (B) in a solvent, into a gel-like formed article; thermally setting the article, with or without stretching, at least at the crystal dispersion temperature of component (A) or (B), but at melting point of component (A) or (B) plus 30° C. or lower; and removing the solvent.
摘要:
Devices and methods of manufacturing a polyolefin microporous film are disclosed. An exemplary device includes a movement mechanism having a constraining means capable of mechanically constraining both widthwise edge parts of the strip-like and film-like microporous film precursor in the drying chamber; a drying means and a liquid seal tank. An exemplary method includes a step for mechanically constraining both widthwise edge parts of the strip-like and film-like microporous film precursor and a step for conveying the foregoing film precursor into the drying chamber. Another exemplary method includes a step for mechanically constraining both widthwise edge parts of the strip-like and film-like microporous film precursor at an entrance side of the drying chamber, a step for commencing extracting of the plasticizer from the film-like microporous film precursor, and a step for conveying the strip-like and film-like microporous film precursor into the drying chamber and for heating the foregoing film precursor.
摘要:
The present invention provides a microporous polyolefin membrane of high permeability and novel structure, and also provides a method of producing the same, wherein its average pore size is gradually decreases from at least one membrane surface towards its center. The method of producing the microporous polyolefin membrane comprises the steps of extruding the solution, composed of 10 to 50 weight % of (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing this polyolefin and 50 to 90 weight % of a solvent, into a gel-like formed article and removing the solvent therefrom, wherein a treatment step with a hot solvent is incorporated.
摘要:
A method for producing a microporous polyolefin membrane formed by fine fibrils, the membrane comprising (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing Component (A), connected to each other, and having micropores of 0.05 to 5 μm in average pore size and crystal lamellas of Component (A) or (B) being in a specific alignment state. The method includes extruding a solution of Component (A) or (B) in a solvent into a gel-like formed article; thermally setting the article, with or without stretching, at least at the crystal dispersion temperature of Component (A) or (B), but at melting point of Component (A) or (B) plus 30° C. or lower; and removing the solvent.
摘要:
It is an object of the present invention to provide a microporous polyolefin membrane, high in pin puncture strength, adequate in pore diameter and high in porosity, comprising (A) an ultra-high-molecular-weight polyolefin having a weight-average molecular weight of 5×105 or more, or (B) a composition containing an ultra-high-molecular-weight polyolefin having a weight-average molecular weight of 5×105 or more, and having a porosity of 30 to 95%, bubble point exceeding 980 KPa and pin puncture strength of 4,900 mN/25 &mgr;m or more. The membrane can be used as a filter or as a separator for a battery.
摘要:
A method for producing a highly permeable microporous polyolefin membrane including the steps of preparing a polyolefin solution containing 5-40 weight % of a polyolefin or a polyolefin composition and 95-60 weight % of a solvent, the polyolefin having a weight-average molecular weight of not less than 3.times.10.sup.5 and less than 1.times.10.sup.6 and a weight-average molecular weight/number-average molecular weight of 5-300, and the polyolefin composition having a weight-average molecular weight of not less than 3.times.10.sup.5 and less than 1.times.10.sup.6 and a weight-average molecular weight/number-average molecular weight of 5-300 as a whole, extruding the polyolefin solution, stretching the extrudate uniaxially at a draft ratio of 3-50 in a molten state, cooling the stretched extrudate to solidify to a gel-like sheet, removing residual solvent, drying the resultant sheet, and heat-setting at a temperature of 80.degree. C. or higher and its melting point or lower. A polyolefin or its composition is uniaxially stretched before it is cooled to a gel-like sheet. Uniaxial stretching of a viscous polyolefin solution allows micropores to have a large average diameter, thereby improving permeability of the microporous polyolefin membrane and accelerating production.
摘要:
A method for producing a microporous polyolefin membrane formed by fine fibrils, the membrane comprising (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing Component (A), connected to each other, and having micropores of 0.05 to 5 μm in average pore size and crystal lamellas of Component (A) or (B) being in a specific alignment state. The method includes extruding a solution of Component (A) or (B) in a solvent into a gel-like formed article; thermally setting the article, with or without stretching, at least at the crystal dispersion temperature of Component (A) or (B), but at melting point of Component (A) or (B) plus 30° C. or lower; and removing the solvent.
摘要:
The present invention provides a microporous polyolefin membrane of high permeability and novel structure, and also provides a method of producing the same, wherein its average pore size is gradually decreases from at least one membrane surface towards its center. The method of producing the microporous polyolefin membrane comprises the steps of extruding the solution, composed of 10 to 50 weight % of (A) a polyolefin having a weight-average molecular weight of 5×105 or more or (B) a composition containing this polyolefin and 50 to 90 weight % of a solvent, into a gel-like formed article and removing the solvent therefrom, wherein a treatment step with a hot solvent is incorporated.