Abstract:
A liquid crystal display device includes a first scanning line, a second scanning line and a third scanning line which are provided for each of a plurality of pixel rows; a first signal line and a second signal line which are provided for each of a plurality of pixel columns; a pixel capacitor provided for each of a plurality of pixels; a temporary storage capacitor for temporarily storing a voltage to be written to the pixel capacitor; a first switching element for controlling electrical connection between the first signal line and the temporary storage capacitor; a second switching element for controlling electrical connection between the temporary storage capacitor and the pixel capacitor; and a third switching element for controlling electrical connection between the second signal line and the pixel capacitor.
Abstract:
A color display device determines a relationship between RGB components of an input color image signal in terms of their gradation levels, and carries out a different calculation for each input color image signal depending on which of six patterns of the relationship that the input color image signal belongs to. Further, the color display device carries out the calculation for each of the RGB components excluding a component with a smallest gradation level, using variables that vary depending on the respective gradation levels of the RGB components.
Abstract:
In the display device and the display method of the present invention, a scanning signal line driving circuit controls falls of a scanning signal line, so as to make level shifts occurring to pixel potentials substantially uniform throughout display plane, the level shifts being caused by parasitic capacitances which parasitically exist in scanning signal lines. Fall waveforms of the scanning signal change at a change rate Sx which is a change quantity per unit time, and by desirably setting the change rate Sx, a change rate Sx1 in the vicinity of an input-side end of the scanning signal line and a change rate SxN in the vicinity of the other end thereof are substantially equal to each other, not being influenced by signal delay transmission characteristic which the scanning signal line possesses, like scanning signal line waveforms Vg(1, j) and Vg(N, j).
Abstract:
A device is provided for setting a voltage applied to each of data signal lines so as to correct a voltage, applied to the pixel, which corresponds to a gradation data signal in each of sub-frames of a single frame. As such, voltage drop, caused by a combination of voltages of the gradation data signal in each of the sub-frames, may be partially or even fully compensated. On this account, it is possible to provide a liquid crystal display device which can lessen or even avoid an influence of the voltage drop caused by, for example, gate-drain capacitance of the thin film transistor in case of adopting time-division driving, and/or a method for driving the liquid crystal display device.
Abstract:
In the display device and the display method of the present invention, a scanning signal line driving circuit controls falls of a scanning signal line, so as to make level shifts occurring to pixel potentials substantially uniform throughout display plane, the level shifts being caused by parasitic capacitances which parasitically exist in scanning signal lines. Fall waveforms of the scanning signal change at a change rate Sx which is a change quantity per unit time, and by desirably setting the change rate Sx, a change rate Sxl in the vicinity of an input-side end of the scanning signal line and a change rate SxN in the vicinity of the other end thereof are substantially equal to each other, not being influenced by signal delay transmission characteristic which the scanning signal line possesses, like scanning signal line waveforms Vg(1, j) and Vg(N, j).
Abstract:
In the display device and the display method of the present invention, a scanning signal line driving circuit controls falls of a scanning signal line, so as to make level shifts occurring to pixel potentials substantially uniform throughout display plane, the level shifts being caused by parasitic capacitances which parasitically exist in scanning signal lines. Fall waveforms of the scanning signal change at a change rate Sx which is a change quantity per unit time, and by desirably setting the change rate Sx, a change rate Sx1 in the vicinity of an input-side end of the scanning signal line and a change rate SxN in the vicinity of the other end thereof are substantially equal to each other, not being influenced by signal delay transmission characteristic which the scanning signal line possesses, like scanning signal line waveforms Vg(1, j) and Vg(N, j).
Abstract:
There is provided an image display device, in which a pixel includes sub-pixels of four or more colors that include a color in addition to the three primary colors, and which can display a high-quality image in which false colors or artifacts are suppressed. The image display device includes a pixel area in which a plurality of pixels P are arranged in a matrix shape, and each of the pixels P includes m (m is an integer which is equal to or greater than 4) sub-pixels SP. When it is assumed that the colors of the m sub-pixels SP included in one pixel are C1, C2, . . . , and Cm, the m sub-pixels SP which are sequentially arrayed from an arbitrary position include all of the colors of C1, C2, . . . , and Cm in both the vertical direction and the horizontal direction in the pixel area.
Abstract:
The present invention is arranged such that interlace image data, which has been supplied, is converted to progressive image data in an I/P conversion section, and the image data converted to progressive style in the I/P conversion section is subjected to image processing including data comparison in spatial or time series manner, in an image processing section.
Abstract:
In the display device and the display method of the present invention, a scanning signal line driving circuit controls falls of a scanning signal line, so as to make level shifts occurring to pixel potentials substantially uniform throughout display plane, the level shifts being caused by parasitic capacitances which parasitically exist in scanning signal lines. Fall waveforms of the scanning signal change at a change rate Sx which is a change quantity per unit time, and by desirably setting the change rate Sx, a change rate Sx1 in the vicinity of an input-side end of the scanning signal line and a change rate SxN in the vicinity of the other end thereof are substantially equal to each other, not being influenced by signal delay transmission characteristic which the scanning signal line possesses, like scanning signal line waveforms Vg(1, j) and Vg(N, j).
Abstract:
A device is provided for setting a voltage applied to each of data signal lines so as to correct a voltage, applied to the pixel, which corresponds to a gradation data signal in each of sub-frames of a single frame. As such, voltage drop, caused by a combination of voltages of the gradation data signal in each of the sub-frames, may be partially or even fully compensated. On this account, it is possible to provide a liquid crystal display device which can lessen or even avoid an influence of the voltage drop caused by, for example, gate-drain capacitance of the thin film transistor in case of adopting time-division driving, and/or a method for driving the liquid crystal display device.