Abstract:
In an intermittent drive mode of a display device in which driving and pausing of the driving are repeated, an image identification section identifies an input image as a still image or a moving image. In a case where the moving image is identified, a drive/pause control section generates a drive/pause control signal with a period ratio in accordance with the moving image. A timing control section generates a driver control signal so that intermittent driving is carried out. Then, a source driver and a gate driver drives a display section so that the drive period and the pause period are repeated with a predetermined period ratio, so that the input image is displayed. The drive/pause control section sets a time ratio between the drive period and the pause period to be variable for each of the moving image and the still image.
Abstract:
A display device of the present invention includes (i) a BL control parameter calculating section (224) for calculating a BL control parameter on the basis of an input image, (ii) a BL luminance control signal generating block (230) for generating a BL luminance control signal on the basis of the BL control parameter and (iii) an output section (225) for supplying, to the BL luminance control signal generating block (230), a BL control parameter that has been calculated by the BL control parameter calculating section (224) immediately before a suspension time period during which a display controlling section is being suspended.
Abstract:
A display device includes: a timing controller (10) for driving a scanning line driving circuit (4) and a signal line driving circuit (6) by providing a scanning period (T1) and a pause period (T2) which follows the scanning period (T1); a data analyzing section (101) for obtaining detection data on an external light intensity; and a BL luminance setting section (104) for outputting, at least during the pause period (T2), a BL control signal for adjusting, in accordance with the detection data obtained by the data analyzing section (101), a luminance of light to be emitted to a screen.
Abstract:
A high speed moving image processing section of a liquid crystal display device includes: a calculation section having a plurality of LUTs in accordance with which an output for performing overshoot drive is obtained with reference to current frame data and previous frame data; and a frame memory in which a video data signal of a previous frame is stored. During each writing period in a single frame period, the calculation section carries out data conversion for performing the overshoot drive by using a video data signal, transmitted from the host device, as current frame data, and by using a video data signal, read out from the frame memory, as pervious frame data. Further, an LUT for performing the overshoot drive is switched in every writing period.
Abstract:
A liquid crystal driving circuit is disclosed which carries out time-division driving with respect to each pixel constituting a liquid crystal display panel by causing a bright and dark frame period and a positive and negative frame period to be different from each other, the bright and dark frame period being a period of brightness and darkness of luminance at which to drive the each pixel, the positive and negative frame period being a period of polarities of a voltage to be applied to liquid crystal of the each pixel.
Abstract:
There is provided an image display device, in which a pixel includes sub-pixels of four or more colors that include a color in addition to the three primary colors, and which can display a high-quality image in which false colors or artifacts are suppressed. The image display device includes a pixel area in which a plurality of pixels P are arranged in a matrix shape, and each of the pixels P includes m (m is an integer which is equal to or greater than 4) sub-pixels SP. When it is assumed that the colors of the m sub-pixels SP included in one pixel are C1, C2, . . . , and Cm, the m sub-pixels SP which are sequentially arrayed from an arbitrary position include all of the colors of C1, C2, . . . , and Cm in both the vertical direction and the horizontal direction in the pixel area.
Abstract:
Disclosed is a display device that (i) converts an input image formed of R, G, and B into a converted image formed of R, G, B, and W to display the converted image and that (ii) compresses the luminance of an input image for the subsequent frame on the basis of an adjustment value C which is corrected in correspondence with the number of, among all pixels in a converted image for the current frame, pixels in a state of luminance saturation and that then converts the input image into a converted image, the display device including a luminance oscillation detecting section (10) for detecting, while input images identical to each other are being inputted each as the above input image, whether converted images corresponding to the respective input images have an oscillating luminance, the display device, in the case where the luminance oscillation detecting section (10) has detected that the converted images have an oscillating luminance, stopping correction of the adjustment value C to fix the adjustment value C to a certain value, thereby preventing the converted images from having an oscillating luminance as a result of oscillation of the adjustment value C.
Abstract:
A display device including a display panel and repeating a scanning period during which the display panel is scanned and a pause period during which the display panel is not scanned. A scanning period and a pause period are set successively to a preceding frame out of two consecutive frames. A pause period is set to an entire period of a subsequent frame out of the two consecutive frames.
Abstract:
A display device includes: a timing controller (10) for driving a scanning line driving circuit (4) and a signal line driving circuit (6) by providing a scanning period (T1) and a pause period (T2) which follows the scanning period (T1); a data analyzing section (101) for obtaining detection data on an external light intensity; and a BL luminance setting section (104) for outputting, at least during the pause period (T2), a BL control signal for adjusting, in accordance with the detection data obtained by the data analyzing section (101), a luminance of light to be emitted to a screen.
Abstract:
A display device of the present invention includes (i) a BL control parameter calculating section (224) for calculating a BL control parameter on the basis of an input image, (ii) a BL luminance control signal generating block (230) for generating a BL luminance control signal on the basis of the BL control parameter and (iii) an output section (225) for supplying, to the BL luminance control signal generating block (230), a BL control parameter that has been calculated by the BL control parameter calculating section (224) immediately before a suspension time period during which a display controlling section is being suspended.