Abstract:
An optical device includes a drive unit configured to drive a light source that outputs a laser beam; a detecting unit configured to detect the laser beam output from the light source; a converting unit configured to convert an output of the detecting unit into a value within a predetermined range; and a control unit configured to control the drive unit to switch a light quantity of the laser beam output from the light source from a first light quantity within an imaging light quantity range for forming an image to a second light quantity outside the imaging light quantity range, or vice versa. The converting unit converts an upper limit light quantity in the imaging light quantity range into a maximum value in the predetermined range, and converts a lower limit light quantity in the imaging light quantity range into a minimum value in the predetermined range.
Abstract:
A toner image formed on an image bearing member is transferred onto a recording material so as to overflow from an edge portion of the recording material, thereby enabling the toner image to be formed so as to extend to the edge portion of the recording material. To suppress the deposition of the toner in the edge portion of the recording material, a cleaning member for cleaning the edge portion of the recording material obtained after the fixing is provided. In order to make a trailing edge of the recording material come into contact with the cleaning member, the recording material which has passed through a fixing apparatus is temporarily switched back, thereby allowing the trailing edge portion of the recording material to collide with the cleaning member.
Abstract:
An optical writing device includes a light source that emits multiple laser beams; a separating unit that separates each of the multiple laser beams into a monitor beam and a scanning beam; a photoelectric converting element 218 that outputs a monitor voltage depending on a quantity of the monitor beam; a memory that stores an initial correction value for correcting a set common current; and a microcontroller that calculates a reference current, which is produced by correcting the common current updated on the basis of the monitor voltages with the initial correction values, obtains corrected currents by correcting the common current with the calculated correction values, controls each quantity of the laser beam on the basis of the corrected currents, and determines that the light source is degraded if a ratio of the corrected current to the reference current is larger than a predetermined threshold value.
Abstract:
In an image forming apparatus, a separating unit separates each laser beam into a first laser beam used for measuring light intensity and a second laser beam used for scanning a photosensitive element, a photoelectric converting unit measures a light intensity of each of the first laser beams and outputs a voltage indicative of the light intensity. A control unit controls a light intensity of each of the laser beams based on a common drive current and a corresponding one of a current correction value, which is set by each of the laser beams to correct a light intensity of a corresponding one of the laser beams based on a corresponding one of the voltages output by the photoelectric converting unit.
Abstract:
A new receptor family has been identified, of activin-like kinases. Novel proteins have activin/TGF-β-type I receptor functionality, and have consequential diagnostic/therapeutic utility. They may have a serine/threonine kinase domain, a DFKSRN or DLKSKN sequence in subdomain VIB and/or a GTKRYM sequence in subdomain VIII.
Abstract:
The present invention aims to provide an eye drop for treating macular edema. The present invention provides an eye drop for treating macular edema, which contains difluprednate as an active ingredient. The eye drop can afford effects such as improvement of visual acuity and decreased foveal retinal thickness in macular edema.
Abstract:
An optical writing device includes a light source that emits multiple laser beams; a separating unit that separates each of the multiple laser beams into a monitor beam and a scanning beam; a photoelectric converting element 218 that outputs a monitor voltage depending on a quantity of the monitor beam; a memory that stores an initial correction value for correcting a set common current; and a microcontroller that calculates a reference current, which is produced by correcting the common current updated on the basis of the monitor voltages with the initial correction values, obtains corrected currents by correcting the common current with the calculated correction values, controls each quantity of the laser beam on the basis of the corrected currents, and determines that the light source is degraded if a ratio of the corrected current to the reference current is larger than a predetermined threshold value.
Abstract:
A first beam splitter splits each laser beam into a first beam and a second beam. A deflecting unit deflects a direction of the second beam. A second beam splitter splits the second beam into multiple split beams. A first photoelectric converting unit measures intensity of the first beam and outputs first voltage. A second photoelectric converting unit measures intensity of each split beam and outputs second voltage. A control unit updates a driving-current correction value using the first voltage and the second voltage, corrects a driving current, and controls intensity of the laser beam based on corrected driving current.
Abstract:
The present invention provides a vitreous cell line capable of expressing an exogenous immortalizing gene, and a production method thereof. Since the vitreous cell line of the present invention can produce a sufficient number of cells and has constant and continuous proliferative capacity, it can be advantageously utilized for the elucidation of the pathogenesis of retinal vitreous diseases, and the development of a drug for the prophylaxis and/or treatment of retinal vitreous diseases. Moreover, the cell line is not only highly useful for the biochemical-physiological studies of the vitreous body, and further for the study of cell differentiation mechanisms, but also possibly usable as a biological material of an artificial vitreous body.
Abstract:
A novel image processing system includes a pixel position indicator and a pixel inserting unit. The pixel position indicator is configured to indicate insertion positions in the image data. The pixel inserting unit is configured to enlarge a size of the image data by inserting an additional pixel at each of the insertion positions and accordingly shifting the original pixels in a given direction. The additional pixel has a value lower than a given threshold. Each insertion position is at an approximate center of an area formed of pixels having values higher than the given threshold. A novel image forming apparatus incorporates such an image processing system and an electrophotographic system. The electrophotographic system is configured to form an image by irradiating a photoconductive surface with a laser beam according to the processed image data.