摘要:
Silicon dots are formed at a relatively low temperature, while suppressing occurrence of defects and clustering of silicon dots and damages caused by plasma, with high controllability of particle diameter and high reproducibility between substrates. Moreover, silicon dots and insulating film are formed at a relatively low temperature, with high controllability of the particle diameter of the silicon dots, high controllability of the thickness of the insulating film and high reproducibility between substrates. A method and an apparatus 1 for forming silicon dots (method and apparatus A for forming a substrate with silicon dots and insulating film) in which inductively coupled plasma is produced by an internal antenna 12 (22) with low inductance from a gas for forming silicon dots (a gas for forming insulating film); silicon dots SiD (insulating film F) are formed on a substrate S in the inductively coupled plasma; the substrate S is placed in a state that it is not exposed to unstable plasma when the plasma is in an unstable state; and the substrate S is exposed to stabilized plasma when the plasma is stabilized to start formation of the silicon dots (formation of insulating film).
摘要:
A hydrogen gas is supplied into a deposition chamber accommodating a silicon sputter target and a deposition target object, a high-frequency power is applied to said gas to generate plasma exhibiting Hα/SiH* from 0.3 to 1.3 between an emission spectral intensity Hα of hydrogen atom radicals at a wavelength of 656 nm and an emission spectral intensity SiH* of silane radicals at a wavelength of 414 nm in plasma emission, and chemical sputtering is effected on the silicon sputter target by the plasma to form a crystalline silicon thin film on the deposition target object. Thereafter a high-frequency power is applied to a terminally treating gas to generate plasma for terminating treatment and the surface of the crystalline silicon thin film is terminally treated by the plasma in the terminally treating chamber.
摘要:
A method for forming silicon dots which can form silicon dots at a relatively low temperature, with good controllability of the particle diameter of silicon dots depending on the particle diameter of silicon dots to be formed.The method for forming silicon dots comprises producing inductively coupled plasma from a gas for forming silicon dots provided within the plasma producing chamber by applying a high-frequency power to an antenna with reduced inductance placed within the plasma producing chamber to form silicon dots on a substrate S disposed within the chamber in the presence of the inductively coupled plasma. Conditions for a pretreatment of the substrate prior to the formation of silicon dots, the temperature of the substrate in forming silicon dots and the gas pressure in the plasma producing chamber during the formation of silicon dots are controlled depending on the particle diameter of the silicon dots.
摘要:
A hydrogen gas is supplied into a deposition chamber accommodating a silicon sputter target and a deposition target object, a high-frequency power is applied to said gas to generate plasma exhibiting Hα/SiH* from 0.3 to 1.3 between an emission spectral intensity Hα of hydrogen atom radicals at a wavelength of 656 nm and an emission spectral intensity SiH* of silane radicals at a wavelength of 414 nm in plasma emission, and chemical sputtering is effected on the silicon sputter target by the plasma to form a crystalline silicon thin film on the deposition target object. Thereafter a high-frequency power is applied to a terminally treating gas to generate plasma for terminating treatment and the surface of the crystalline silicon thin film is terminally treated by the plasma in the terminally treating chamber.