Abstract:
Disclosed is an organic electroluminescent element having an element structure that can reduce damage to an organic layer during electrode formation and can facilitate the injection of charges from the electrode into the organic layer. The organic electroluminescent element includes an anode, a cathode, and an organic layer held between the anode and the cathode. The organic layer contains a luminescent material. The organic electroluminescent element further includes a transparent protective layer provided between the anode or the cathode and the organic layer. The transparent protective layer contains a bipolar charge transport organic compound and an electron-accepting compound. The transparent protective layer is formed in a period between after the formation of the organic layer and before the formation of the anode or the cathode on the organic layer.
Abstract:
The present invention provides a flexible substrate, which has solvent resistance, a high level of gas barrier properties, a high level of flexibility, high heat resistance, and a high level of transparency, and is suitable, for example, for use in a wet coating process of an organic device material, and an organic device using the same. The flexible substrate comprises a metal oxide polymer-containing layer and a three-dimensionally crosslinked polymer layer stacked in that order on at least one side of a very thin glass. The metal oxide polymer is a silicon oxide polymer, and the metal oxide polymer-containing layer underlying the three-dimensionally crosslinked polymer layer is neither swollen nor dissolved in an aromatic organic solvent.
Abstract:
A polypropylene resin composition is disclosed which contains a propylene polymer (A) selected from the group consisting of propylene homopolymers (A-1) and propylene-ethylene block copolymers (A-2) which are propylene-ethylene block copolymers each of which is composed of a propylene homopolymer component and a propylene-ethylene random copolymer component and has an intrinsic viscosity of from 2 to 8 dl/g, an ethylene-α-olefin copolymer (B) defined below, the amount of the polymer (A) and the amount of the copolymer (B) each being based on the combined amount of the polymer (A) and the copolymer (B) which is an ethylene-α-olefin copolymer having a melt index, as measured at 190° C., of from 1 to 40 g/10 min, and a petroleum resin (C-1) or a terpene resin (C-2) having a glass transition temperature of 90° C. or lower.
Abstract:
Disclosed is a method for producing a modified propylene polymer that exhibits low flowability and also exhibits little fluctuation in melt flow rate compared with the melt flow rate of the propylene polymer before modification, the method involving a heat treatment step of subjecting a mixture comprising 100 parts by weight of a propylene polymer (A), from 0.1 to 50 parts by weight of an ethylenically unsaturated bond-containing compound (B), and from 0.01 to 20 parts by weight of an organic peroxide (C) whose decomposition temperature at which the half-life thereof becomes 1 minute is lower than 120° C. to heat treatment by using an extruder at a temperature lower than the decomposition temperature of the organic peroxide (C) at which the half-life thereof becomes 1 minute.
Abstract:
To provide a tilt angle sensor that is capable of detecting acceleration, a tilt angle, and the like of a device to which the tilt sensor angle is mounted, and also capable of reducing the size and the cost with a simple structure. The tilt angle sensor comprises: a spring member having a fixed end a free end that has a flexibility to be bent at least in one direction; a magnetic field generating device for generating a magnetic field, which is mounted at the free end of the spring member; a magnetic field detecting device provided by facing the magnetic field generating device for detecting a direction of the magnetic field generated by the magnetic field generating device; and a damping device for giving a damping force to a bending action of the spring member.
Abstract:
Disclosed is an organic electroluminescent element having an element structure that can reduce damage to an organic layer during electrode formation and can facilitate the injection of charges from the electrode into the organic layer. The organic electroluminescent element includes an anode, a cathode, and an organic layer held between the anode and the cathode. The organic layer contains a luminescent material. The organic electroluminescent element further includes a transparent protective layer provided between the anode or the cathode and the organic layer. The transparent protective layer contains a bipolar charge transport organic compound and an electron-accepting compound. The transparent protective layer is formed in a period between after the formation of the organic layer and before the formation of the anode or the cathode on the organic layer.
Abstract:
There is provided a polypropylene resin composition comprising a propylene polymer (A) containing 0 to 70% by mass of a propylene homopolymer (A-1) and 30 to 100% by mass of a propylene-ethylene block copolymer (A-2) defined below, an ethylene-α-olefin copolymer (B) defined below, and an inorganic filler (C), wherein the proportion of the amount of the (A), the proportion of the amount of (B), and the proportion of the amount of (C) relative to the total amount of the (A), the (B) and the (C) are 40 to 94% by mass, 5 to 30% by mass, and 1 to 30% by mass, respectively, the propylene-ethylene block copolymer (A-2) is a mixture of a propylene homopolymer component and a propylene-ethylene random copolymer component, wherein the intrinsic viscosity, as measured in Tetralin of 135° C., of the propylene-ethylene random copolymer component is within the range of 2.0 to 8.0 dl/g, the ethylene-α-olefin copolymer (B) is a copolymer of ethylene and an α-olefin having 4 to 20 carbon atoms, the copolymer having a density of 0.85 to 0.89 g/cm3 and a melt flow rate, as measured at 190° C. under a 2.16 kg load in accordance with JIS K7210, of more than 10 g/10 min and not more than 40 g/10 min.
Abstract:
A polypropylene resin composition is disclosed which contains a propylene polymer (A) selected from the group consisting of propylene homopolymers (A-1) and propylene-ethylene block copolymers (A-2) which are propylene-ethylene block copolymers each of which is composed of a propylene homopolymer component and a propylene-ethylene random copolymer component and has an intrinsic viscosity of from 2 to 8 dl/g, an ethylene-α-olefin copolymer (B) defined below, the amount of the polymer (A) and the amount of the copolymer (B) each being based on the combined amount of the polymer (A) and the copolymer (B) which is an ethylene-α-olefin copolymer having a melt index, as measured at 190° C., of from 1 to 40 g/10 min, and a petroleum resin (C-1) or a terpene resin (C-2) having a glass transition temperature of 90° C. or lower.
Abstract:
A propylene-based resin is disclosed which has at least one kind of functional groups selected from the group (i) consisting of a hydroxyl group, an amino group and a mercapto group, and at least one kind of functional groups selected from the group (ii) consisting of a carboxyl group, an acid anhydride group, epoxy group and an isocyanate group.
Abstract:
A method for producing a modified polyolefin resin is disclosed which has a step of melt-kneading 100 parts by weight of polyolefin resin (A), from 0.1 to 20 parts by weight of at least two kinds of nonaromatic double-bond-containing monomer (B) and from 0.01 to 20 parts by weight of organic peroxide (C), wherein at least one member of the at least two kinds of nonaromatic double-bond-containing monomer (B) is a nonaromatic double-bond-containing monomer having at least one kind of functional group selected from the group consisting of amino group, hydroxyl group and mercapto group or a derivative of the monomer (B1), and other at least one member is a nonaromatic double-bond-containing monomer having at least one kind of functional group selected from the group consisting of carboxyl group, acid anhydride group, epoxy group and isocyanate group or a derivative of the monomer (B2).