Abstract:
A boiling heat transfer device of the present invention includes: a heat receiving portion that boils a liquefied refrigerant to convert it to vapor, and contacts with a device to be cooled and cools the device to be cooled; a vapor tube that connects to an upper portion of the heat receiving portion and conveys the vapor generated by the heat receiving portion; a heat dissipating portion that condenses the vapor conveyed from the vapor tube to convert it to a liquefied refrigerant and dissipates heat to an atmosphere; and a liquid tube that returns to the heat receiving portion the liquefied refrigerant condensed by the heat dissipating portion. At least a portion of a cross-sectional area of a flow passage of the vapor in the heat receiving portion gradually decreases from a lower portion of the heat receiving portion toward the upper portion of the heat receiving portion.
Abstract:
A piezoelectric sound generating element capable of providing flatter and less fluctuated sound pressure frequency characteristics includes a diaphragm that is formed in a circular plate shape with a circular profile. A piezoelectric element is affixed to the side of a bottom wall portion of the diaphragm. The piezoelectric element has an asymmetric octagonal profile including a pair of long side portions opposing each other, a pair of short side portions opposing each other, and four connecting side portions.
Abstract:
An electronic substrate has a tabular base material which can install a heater element and a cooling structure that cools the heater element. The electronic substrate can be plugged in/out in a case in the direction which is almost parallel to the face of the base material. The cooling structure has a first heat radiation part with a hollow shape and a heat transfer part. The first heat radiation part radiates the generated heat of a heater element installed in the base material. A heat transfer part transfers the generated heat to the first heat radiation part. The first heat radiation part has a first joint surface formed along a face which is almost vertical to the insert and removal direction of the base material. The first heat radiation part is connected to a second radiation part set up in the case thermally through the first joint surface.
Abstract:
A boiling heat transfer device of the present invention includes: a heat receiving portion that boils a liquefied refrigerant to convert it to vapor, and contacts with a device to be cooled and cools the device to be cooled; a vapor tube that connects to an upper portion of the heat receiving portion and conveys the vapor generated by the heat receiving portion; a heat dissipating portion that condenses the vapor conveyed from the vapor tube to convert it to a liquefied refrigerant and dissipates heat to an atmosphere; and a liquid tube that returns to the heat receiving portion the liquefied refrigerant condensed by the heat dissipating portion. At least a portion of a cross-sectional area of a flow passage of the vapor in the heat receiving portion gradually decreases from a lower portion of the heat receiving portion toward the upper portion of the heat receiving portion.
Abstract:
[Problem] When a size of a cooling device using a boiling cooling system is reduced, a cooling performance decreases.[Means for solving the problems] It is characterized in that an evaporation unit which stores refrigerant, a condensing unit which condenses a gas-phase refrigerant produced by vaporizing the refrigerant in the evaporation unit to a liquid and dissipates heat, a vapor pipe which conveys the gas-phase refrigerant to the condensing unit, and a liquid pipe which conveys a liquid-phase refrigerant obtained by condensing the gas-phase refrigerant in the condensing unit to the evaporation unit are included, the condensing unit includes a heat dissipation flow path, an upper header which connects the vapor pipe and the heat dissipation flow path, and a lower header which connects the heat dissipation flow path and the liquid pipe, the upper header includes a flow path header portion connected to the heat dissipation flow path and an upper header extension portion located around the flow path header portion, and the upper header extension portion has a connection port connected to the vapor pipe in a face to which the heat dissipation flow path is connected.
Abstract:
A metal plate that forms a heat-absorbing surface has a center portion which protrudes so as to correspond to the size of a semiconductor element. A fixing support point of a plate spring is provided at a center of this protruding surface, and the plate spring is fixed on all sides. Grounding pressure is applied via the single point provided by the fixing support point. As a result, any tilting of the heat-absorbing surface relative to the surface of the heat-generating element is kept to a minimum. Heat pipes are provided around the periphery such that they enclose the protruding area from the outside.
Abstract:
In a cooling device using an ebullient cooling system, cooling performance adversely decreases if the evaporator includes projections activating convection heat transfer and the bubble nuclei are formed on the inner wall surface. A cooling device according to an exemplary embodiment includes an evaporator storing a refrigerant and a condenser condensing and liquefying a vapor-state refrigerant vaporized in the evaporator and radiating heat. The evaporator includes a base thermally contacting with an object to be cooled, and a container. The base includes a plurality of projections on a boiling surface of a surface at an inner wall side contacting with the refrigerant. The cross-sectional area cut along a plane parallel to the boiling surface at the top of the projection is smaller than that at the boiling surface. The evaporator includes a bubble nucleus forming surface only on a part of a refrigerant contacting surface.
Abstract:
Provided is a highly reliable liquid crystal display device that prevents the penetration of a flying dust and dirt in the outside air. A liquid crystal display device (1) having a display unit housing case (2) configured to house a light source unit and a display unit, and an electronic component housing case (3) configured to house an electronic component. The liquid crystal display device (1) is tightly closed and externally disposed with heat radiation fins (6a and 6b).
Abstract:
A data recording control device controls a recording device to record data acquired by a data acquisition device from a first time point before inputting a trigger signal to a second time point after the trigger signal is input, to a record medium. The control device has a sensor for detecting a light; an output portion for outputting the trigger signal in correspondence to the sensor detecting the light with a predetermined amount of lighting or above when the output portion is set in a standby state; and a control portion releasing the standby state when the output portion outputs the trigger signal, and setting the output portion in the standby state in correspondence to the sensor not detecting the light with the predetermined amount of lighting or above within a predetermined period of time.
Abstract:
A maintenance-free cooling structure is provided which, by removing bubbles produced on a boiling surface utilizing an action other than buoyancy, heat change (heat transfer) is effectively brought about on the boiling surface, thus enabling efficient cooling and its miniaturization and low power consumption. The cooling structure has an evaporation chamber 11 connected through a vapor pipe and a liquid return pipe to a condensation chamber to allow a phase change to occur from a vapor phase coolant V to a liquid phase coolant L. In the evaporation chamber, as a result of contact of the liquid phase coolant L with the boiling surface of a base plate 21 and/or with plate-shaped fins, the phase change occurs from liquid to vapor. The evaporation chamber has an aperture operating as a vapor port 25 for the vapor pipe which is formed in a neighboring position along an inner circumferential surface 23a of a cylindrical plate 23 in a ceiling surface 22a and an aperture operating as a liquid return port for the liquid return pipe which is formed in a position neighboring to an end edge along the boiling surface on an inner circumferential surface on a side opposite to the vapor port 25, so that the flow-in direction of the liquid phase coolant is in parallel to the boiling surface.