Abstract:
A mobile communication device is provided with a wireless module and a controller module. The wireless module performs wireless transceiving to and from a service network. The controller module receives, on a paging channel, a first predetermined number of symbols in a frame of a time slot via the wireless module, and determines whether to enter a standby mode according to the first predetermined number of symbols. Also, the controller module stops the receiving of subsequent symbols in the frame by deactivating the wireless module in response to entering the standby mode.
Abstract:
A preamble channel encoder, e.g., in a UHDR-DO system, uses a channel structure that can efficiently transmit more information bits, yet achieve sufficient detection and false alarm performance. The preamble channel encoder uses tail-biting convolutional coding and Cyclical Redundancy Check (CRC). The preamble channel structure can be used to encode, e.g., rate indicator bits, while a MAC identifier encoder, e.g., a Reed-Solomon encoder, is used to encode MAC identifier bits. The encoded rate indictor and MAC identifier bits can then be mapped to the appropriate tones in an OFDM encoding scheme.
Abstract:
A control channel encoder that uses a channel structure that efficiently transmits more information bits, yet achieves sufficient detection and false alarm performance. Disclosed embodiments use a fixed encoder packet size, tail-biting convolutional coding, and Cyclical Redundancy Check (CRC). Further disclosed is a control channel decoder using Viterbi Decoding and a circular trellis check.
Abstract:
A mobile communication device is provided with a wireless module and a controller module. The wireless module performs wireless transceiving to and from a service network. The controller module receives, on a paging channel, a first predetermined number of symbols in a frame of a time slot via the wireless module, and determines whether to enter a standby mode according to the first predetermined number of symbols. Also, the controller module stops the receiving of subsequent symbols in the frame by deactivating the wireless module in response to entering the standby mode.
Abstract:
A channel structure that can efficiently transmit more data control bits, e.g., required by future wireless communication systems, yet achieve sufficient detection and false alarm performance uses tail-biting convolutional coding and Cyclical Redundancy Check (CRC). In certain implementations, symbol repetition, interleaving and/or scrambling can also be included. Also, depending on the implementation, modulation schemes such as Bi-Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) or Quadrature Amplitude Modulation (QAM) can be used in conjunction with the other coding techniques.
Abstract:
A channel structure that can efficiently transmit more data control bits, e.g., required by future wireless communication systems, yet achieve sufficient detection and false alarm performance uses tail-biting convolutional coding and Cyclical Redundancy Check (CRC). In certain implementations, symbol repetition, interleaving and/or scrambling can also be included. Also, depending on the implementation, modulation schemes such as Bi-Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) or Quadrature Amplitude Modulation (QAM) can be used in conjunction with the other coding techniques.