摘要:
Methods for patterning integrated circuit (IC) features with varying dimensions are provided. In an example, a method includes forming a first patterned radiation-sensitive resist layer over a device substrate using a first mask, wherein the first patterned radiation-sensitive resist layer includes a first portion of an IC pattern; using the patterned first radiation-sensitive resist layer as a mask to form the first portion of the IC pattern in the device substrate; forming a second patterned radiation-sensitive resist layer over the device substrate using a second mask, wherein the second patterned radiation-sensitive resist layer includes a second portion of the IC pattern; and using the patterned second radiation-sensitive resist layer as a mask to form the second portion of the IC pattern in the device substrate. The combined first and second portions of the IC pattern in the device substrate form an IC feature having a dimension greater than dimensions of the first and second portions.
摘要:
A method for forming vias and trenches for an interconnect structure on a substrate includes exposing via pitch reduction patterns in a photoresist layer, developing the patterns to remove the via pitch reduction patterns, etching the photoresist layer partially using a polymer gas to reshape the pattern into small via shapes, and etching the remaining photoresist layer to extend the reshaped pattern. The reshaped small via shape patterns have a smaller pitch than the via pitch reduction patterns in a long direction. For via pitch reduction patterns having two vias each, the pattern has a peanut-shape. During the reshaping etch operation, the polymer gas deposits more in a pinched-in middle section while allowing downward etch in unpinched sections.
摘要:
A method of lithography patterning includes forming a hard mask layer on a material layer and forming a capping layer on the hard mask layer. The capping layer does not react with oxygen gas during a photoresist ashing process. The capping layer is patterned by using a first resist pattern and a second resist pattern as etch masks. After the capping layer is patterned, the hard mask layer is patterned by using the patterned capping layer as an etch mask.
摘要:
A process for forming an interconnect structure in a low-k dielectric layer includes etching to form trenches in the dielectric layer, removal of photoresist, and further etching to remove damaged portions of the dielectric layer in sidewalls of the trenches. An interconnect structure includes a low-k dielectric layer formed on a substrate, and a conductor embedded in the dielectric layer, the conductor having an edge portion with an inwardly rounded shape.
摘要:
The present disclosure provides a semiconductor device that includes, a substrate; a first conductive line located over the substrate and extending along a first axis, the first conductive line having a first length and a first width, the first length being measured along the first axis; a second conductive line located over the first conductive line and extending along a second axis different from the first axis, the second conductive line having a second length and a second width, the second length being measured along the second axis; and a via coupling the first and second conductive lines, the via having an upper surface that contacts the second conductive line and a lower surface that contacts the first conductive line. The via has an approximately straight edge at the upper surface, the straight edge extending along the second axis and being substantially aligned with the second conductive line.
摘要:
A method of lithography patterning includes forming a hard mask layer on a material layer and forming a capping layer on the hard mask layer. The capping layer does not react with oxygen gas during a photoresist ashing process. The capping layer is patterned by using a first resist pattern and a second resist pattern as etch masks. After the capping layer is patterned, the hard mask layer is patterned by using the patterned capping layer as an etch mask.
摘要:
Methods for patterning integrated circuit (IC) features with varying dimensions are provided. In an example, a method includes forming a first patterned radiation-sensitive resist layer over a device substrate using a first mask, wherein the first patterned radiation-sensitive resist layer includes a first portion of an IC pattern; using the patterned first radiation-sensitive resist layer as a mask to form the first portion of the IC pattern in the device substrate; forming a second patterned radiation-sensitive resist layer over the device substrate using a second mask, wherein the second patterned radiation-sensitive resist layer includes a second portion of the IC pattern; and using the patterned second radiation-sensitive resist layer as a mask to form the second portion of the IC pattern in the device substrate. The combined first and second portions of the IC pattern in the device substrate form an IC feature having a dimension greater than dimensions of the first and second portions.
摘要:
Methods for improving post etch in via or trench formation in semiconductor devices. A preferred embodiment comprises forming a re-capping layer over a dielectric film following an initial etch to form a feature in the dielectric film, followed by additional etch and etch back processing steps. The re-capping method provides protection for underlying films and prevents film damage post etch. Uniform feature profiles are maintained and critical dimension uniformity is obtained by use of the methods of the invention. The time dependent dielectric breakdown performance is increased.
摘要:
A method of lithography patterning includes forming a hard mask layer on a material layer and forming a capping layer on the hard mask layer. The capping layer does not react with oxygen gas during a photoresist ashing process. The capping layer is patterned by using a first resist pattern and a second resist pattern as etch masks. After the capping layer is patterned, the hard mask layer is patterned by using the patterned capping layer as an etch mask.
摘要:
A method for fabricating an integrated circuit device is provided. In one embodiment, the method includes providing a substrate. A first photolithography process is performed to define a first pattern on the substrate. The first pattern includes a first trench segment. A second photolithography process is performed which defines a second pattern on the substrate. The second pattern includes a second trench segment. The second trench segment includes an overlap area with the first trench segment. The embodiment of the method further includes etching the substrate according the first and second patterns; the etching includes forming a via hole defined by the overlap area. The first trench segment, second trench segment, and via hole may be used to form a dual damascene interconnect structure.