Abstract:
An apparatus and a method for generating a partial product for a polynomial operation are provided. The apparatus includes first encoders, each of the first encoders configured to selectively generate and output one of mutually exclusive values based on two inputs. The apparatus further includes a second encoder configured to generate and output two candidate partial products based on an output from a first one of the first encoders that is provided at a reference bit position of the inputs, an output from a second one of the first encoders that is provided at an upper bit position of the inputs, and a multiplicand. The apparatus further includes a multiplexer configured to select one of the candidate partial products output from the second encoder.
Abstract:
A reconfigurable processor for efficiently performing a vector operation, and a method of controlling the reconfigurable processor are provided. The reconfigurable processor designates at least one of a plurality of processing elements as a vector lane based on vector lane configuration information, and allocates a vector operation to the designated vector lane.
Abstract:
A fixed multiply-add (FMA) apparatus and method are provided. The FMA apparatus includes a partial product generator configured to generate a partial sum and a partial carry, a carry save adder configured to generate a partial sum having a first bit size and a partial carry having the first bit size by adding the partial sum and the partial carry to least significant bits (LSBs) of the mantissa of a third floating-point number, a carry select adder configured to generate a mantissa having a second bit size by adding the first bit-size partial sum and the first bit-size partial carry to most significant bits (MSBs) of the third floating-point number, and a selector configured to transmit the first bit-size partial sum and the first bit-size partial carry to the carry save adder or the carry select adder according to whether the mantissa of the third floating-point number is zero.
Abstract:
Disclosed is a method and an apparatus for self-calibrating a Direct Current (DC) offset and an imbalance between orthogonal signals, which may occur in a mobile transceiver. In the apparatus, a transmitter of a mobile terminal functions as a signal generator, and a receiver of the mobile terminal functions as a response characteristic detector. Further, a baseband processor applies test signals to the transmitter, receives the test signals returning from the receiver, and compensates the imbalance and DC offset for the transmitter side and the receiver side by using the test signals. The test signal is applied to only one of the I channel path and the Q channel path, and an RF band signal output from the transmission side by the test signal is used as an input signal to the reception side.
Abstract:
An apparatus and method for converting data between a floating-point number and an integer is provided. The apparatus includes a data converter configured to determine a sign of input binary data and an output format to which to convert the input binary data and convert the input binary data into a one's complement number based on the sign and the output format of the input binary data, a bias value generator configured to determine whether the input binary data has been rounded up based on a rounding mode of the input binary data and generate a bias value accordingly; and an adder configured to convert the input binary data into a two's complement number by adding the one's complement number and the bias value.
Abstract:
Provided are an apparatus and method for calculating the number of leading zero bits of a binary operation. The apparatus and method may accurately predict the number of leading zero bits using a binary tree structure of an input operand for a binary operation and reduce operation delay time due to the increase in number of bits of the operand. The method may include generating 2n first functions by performing a logical operation on two input binary numbers on a bit-by-bit basis, calculating a second function by combining the first functions and a leading zero bit candidate value of the second function, and determining a final number of leading zero bits by recursively performing the calculating.
Abstract:
A reconfigurable processor for efficiently performing a vector operation, and a method of controlling the reconfigurable processor are provided. The reconfigurable processor designates at least one of a plurality of processing elements as a vector lane based on vector lane configuration information, and allocates a vector operation to the designated vector lane.
Abstract:
A dividing apparatus and method using coordinate rotation is disclosed. To this end, a plurality of rotation stages are sequentially performed until a divisor reaches a criterion and a rotation direction used in each of the plurality of stages is output. A division result acquired by performing rotation with respect to a dividend using the rotation direction for each of the plurality of stages is output.
Abstract:
Provided are an apparatus and method for calculating the number of leading zero bits of a binary operation. The apparatus and method may accurately predict the number of leading zero bits using a binary tree structure of an input operand for a binary operation and reduce operation delay time due to the increase in number of bits of the operand. The method may include generating 2n first functions by performing a logical operation on two input binary numbers on a bit-by-bit basis, calculating a second function by combining the first functions and a leading zero bit candidate value of the second function, and determining a final number of leading zero bits by recursively performing the calculating
Abstract:
A fixed multiply-add (FMA) apparatus and method are provided. The FMA apparatus includes a partial product generator configured to generate a partial sum and a partial carry, a carry save adder configured to generate a partial sum having a first bit size and a partial carry having the first bit size by adding the partial sum and the partial carry to least significant bits (LSBs) of the mantissa of a third floating-point number, a carry select adder configured to generate a mantissa having a second bit size by adding the first bit-size partial sum and the first bit-size partial carry to most significant bits (MSBs) of the third floating-point number, and a selector configured to transmit the first bit-size partial sum and the first bit-size partial carry to the carry save adder or the carry select adder according to whether the mantissa of the third floating-point number is zero.