Abstract:
The present invention is directed towards a method for spinning anionically modified cellulose comprising the steps of: (a) preparing a suspension of the anionically modified cellulose in a continuous phase; (b) subjecting the suspension to high shear rate; (c) performing spinning by extruding the cellulose suspension through a spinneret into a spinbath comprising a cationic complexing agent, and (d) isolating the sun fibers from the spin bath; as well as fibers obtained based on the method of the invention and paper or board products derived from such fibers.
Abstract:
The present invention is directed towards a method for spinning neutral or anionically modified cellulose comprising the steps of: (a) preparing a suspension of the neutral or anionically modified cellulose in a continuous phase; (b) subjecting the suspension to high shear rate; (c) performing spinning by extruding the cellulose suspension into an airgap region comprising at least one heated zone to obtain spun fibres, (d) subjecting the spun fibres to at least one washing stages and (e) isolating the spun fibres from the at least one washing stages; as well as fibres obtained based on the method of the invention and paper or board products derived from such fibres.
Abstract:
A method of forming a solution of a solid includes the steps of: (1) forming a dispersion which comprises (a) a liquid, (b) the solid dispersed in powder form and (c) a polymeric binder dissolved in the liquid, and (2) mixing the dispersion with the solvent under conditions such that the powder dissolves in the solvent. If a solution prepared by this method is allowed to dry out, the polymeric binder binds the powder and thus suppresses dust formation. The method has particular application to solids which are reactive textile auxiliaries. A dispersion of a solid in powder form in an aqueous liquid contains a major proportion of a low viscosity, water-soluble cellulose ether and a minor proportion of a natural polysaccharide gum.
Abstract:
The fibrillation tendency of solvent-spun fiber can be increased by subjecting the fiber to a treatment which reduces its degree of polymerisation by about 200 units or more. Suitable methods of treatment include severe bleaching, for example application of an aqueous liquor containing 0.1 to 10 percent by weight sodium hypochlorite (as available chlorine) to the fiber followed by steaming. Fiber may be treated in never-dried or previously-dried form. Fiber treated by the process of the invention is useful for example in the manufacture of paper and hydroentangled fabrics. Fiber of increased tendency to fibrillation can be beaten to a Canadian Standard Freeness 400 in the Disintegration Test by 30,000-150,000 disintegrator revolutions and to a Canadian Standard Freeness 200 in the same Test by 50,000-200,000 disintegrator revolutions.
Abstract:
A process of manufacturing lyocell fiber with an increased tendency to fibrillation which includes dissolving cellulose in a tertiary amine N-oxide solvent to form a solution. The degree of polymerization of the cellulose is not more than about 450 and the concentration of cellulose in the solution is at least 16 percent by weight. The solution is extruded through a die to form a plurality of filaments which are washed to remove the solvent, thereby forming the lyocell fiber which is then dried.
Abstract:
The present invention is directed towards a method for spinning neutral or anionically modified cellulose comprising the steps of: (a) preparing a suspension of the neutral or anionically modified cellulose in a continuous phase; (b) subjecting the suspension to high shear rate; (c) performing spinning by extruding the cellulose suspension into an airgap region comprising at least one heated zone to obtain spun fibers, (d) subjecting the spun fibers to at least one washing stages and (e) isolating the spun fibers from the at least one washing stages; as well as fibers obtained based on the method of the invention and paper or board products derived from such fibers.
Abstract:
The present invention is directed towards a method for spinning anionically modified cellulose comprising the steps of: (a) preparing a suspension of the anionically modified cellulose in a continuous phase; (b) subjecting the suspension to high shear rate; (c) performing spinning by extruding the cellulose suspension through a spinneret into a spinbath comprising a cationic complexing agent, and (d) isolating the sun fibres from the spin bath; as well as fibres obtained based on the method of the invention and paper or board products derived from such fibres.
Abstract:
This invention provides a process for treating chemical woodpulp, or chemical cellulose including cotton linter, including the step of applying an electron processing technology (EPT) step to chemical woodpulp, or chemical cellulose, as the case may be, on an in-line basis to provide control of pulp viscosity or degree of polymerization (DP). The invention also provides a method of process control in treating the aforementioned woodpulp or cellulose, including the step of using radiation dose-viscosity relationship curve for applying an EPT step on an in-line basis. The in-line EPT step may, in one form of the invention, replace and hence eliminate a chemical DP reduction step.
Abstract:
A method of forming a flame retardant cellulose fiber is disclosed which comprises the steps of producing lyocell fiber and incorporating a flame retardant chemical into the fiber while the fiber is in the never-dried condition prior to first drying.