Abstract:
The present invention relates to a high-tenacity cellulosic regenerated fiber with an individual fiber titer of between 0.6 and 0.9 dtex and yarns and planar textile structures which contain regenerated fibers of this kind.
Abstract:
A fine cellulose fiber in which when the fine cellulose fiber is formed into a dispersion, the dispersion has very high light transmittance and viscosity, and a method for producing the fine cellulose fiber. The fine cellulose fiber has a fiber width of 1 to 200 nm. A part of hydroxy groups of the cellulose fiber are substituted with a predetermine functional group to introduce an ester of phosphorus-oxo acid, and the introduction amount of the functional group is more than 2.0 mmol per 1 g of the cellulose fiber. For producing the fine cellulose fiber, to cellulose fiber is added a solution having a pH of less than 3.0 and including an additive (A) containing at least one of a phosphorus-oxo acid and a phosphorus-oxo acid metal salt and an additive (B) containing at least one of urea and a urea derivative, and the mixture is heated to perform fibrillation.
Abstract:
High permeability curly fibers with enhanced fiber strength are produced by mercerizing cellulosic fibers. The fibers have relatively high values for curl, kink level, wet tensile strength, and bulk density when compared with current fibers. The disclosed fibers can be used in a wide range of applications including paper products such as filters.
Abstract:
A method is provided for preparing a fibrous material of crosslinked microfibrillated cellulose. Dialdehyde microfibrillated cellulose is spun into a fibrous material; said fibrous material is pre- or post-treated (by reduction of pH) to provide crosslinking between the dialdehyde microfibrillated cellulose. Fibrous materials such as filaments or mats, and polymer composites comprising such materials are also described.
Abstract:
The present invention is directed to a cellulosic fibre composition comprising regenerated cellulose and one or more additives, wherein a) the cellulosic fibre composition is produced by injecting an aqueous alkaline spindope solution or suspension comprising dissolved cellulose in a concentration from about 5% to about 12% by weight of spindope and at least one of an additive and a nano-sized structured particulate filler through a nozzle into an alkaline coagulation bath forming cellulosic filaments; and b) stretching or washing cellulosic filaments from a) in one or more stretching and washing baths forming a regenerated cellulosic fibre.
Abstract:
The present disclosure relates to lignocellulosic materials comprising phosphorylated lignocellulosic fibers having an ionic charge in water of about 4000 to about 7000 mmoles/kg, and processes for the preparation thereof. The process comprises reacting lignocellulosic fibers of a lignocellulosic material with a phosphate ester in the presence of urea. The present disclosure further relates to compositions comprising a phosphate ester and at least one of a defoamer and a viscosity reducer or at least one of a C1-C12 alcohol and an ester of a carboxylic acid.
Abstract:
The present invention relates to a method for the continuous production of low thermal conductivity endless filament yarns with a compact, homogeneous structural morphology. The presently disclosed methods utilize safe and recyclable ionic liquids to produce carbon fiber precursors from cellulose. The fibers are produced by the carbonization of cellulose carbon fiber precursors. The precursor fiber filaments have an increased tear resistance with simultaneously sufficient elongation, a round or crenulated cross-section, and homogeneous fiber morphology. The filament yarns exhibit performance characteristics similar to those produced from traditional viscose rayon. The resulting fibers are especially suited for aerospace applications in composite materials used at the limits of high temperatures, for instance in structures found in rocket nozzles or atmospheric reentry heat shields on spacecraft.
Abstract:
Crosslinking systems suitable for use in a polymer melt composition wherein the polymer melt composition comprises a hydroxyl polymer; polymeric structures made from such polymer melt compositions; and processes/methods related thereto are provided.
Abstract:
The embodiments and examples provided herein are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the present invention relates to compositions and methods of preparing a hydrogel comprising a water soluble cellulose compound, as well as preparing a three-dimensional matrix of micron sized electrospun fibers, wherein the electrospun fibers are formed from a electrospun composite comprising a water soluble cellulose compound. The matrix provides a scaffold supporting and promoting cartilage regeneration and repair.
Abstract:
The present invention is directed towards a method for spinning anionically modified cellulose comprising the steps of: (a) preparing a suspension of the anionically modified cellulose in a continuous phase; (b) subjecting the suspension to high shear rate; (c) performing spinning by extruding the cellulose suspension through a spinneret into a spinbath comprising a cationic complexing agent, and (d) isolating the sun fibers from the spin bath; as well as fibers obtained based on the method of the invention and paper or board products derived from such fibers.