Abstract:
A method for ultra-hydrophilic surface treatment of a polymer fiber substrate according to the present invention comprises the steps of: forming a thermosetting coating layer on the surface of a polymer substrate; forming a carboxylate group (—COO—) on the surface of the thermosetting coating layer; forming an amide bond (—CONH—) between the thermosetting coating layer and hydrogel monomers; and forming a hydrophilic polymer layer by crosslinking the hydrogel monomers.
Abstract:
An article comprising a substrate having a stimuli-responsive hydrogel polymer functionalized to or associated with a surface. The stimuli-responsive hydrogel polymer is at least partially hydrated by an aqueous disinfectant solution comprising a disinfectant. The disinfectant is formed-prior to hydrating the stimuli-responsive hydrogel polymer. At least a portion of the disinfectant is taken up, stored, or released as an aqueous solution or a gaseous vapor upon interaction with a stimulus.
Abstract:
A method includes coating a substrate to provide a flame resistant substrate. In an embodiment, the method includes exposing the substrate to a cationic solution to produce a cationic layer deposited on the substrate. The cationic solution comprises cationic materials. The cationic materials comprise a polymer, a colloidal particle, a nanoparticle, a nitrogen-rich molecule, or any combinations thereof. The method further includes exposing the cationic layer to an anionic solution to produce an anionic layer deposited on the cationic layer to produce a layer comprising the anionic layer and the cationic layer. The anionic solution comprises a layerable material.
Abstract:
A method includes coating a substrate to provide a flame resistant substrate. In an embodiment, the method includes exposing the substrate to a cationic solution to produce a cationic layer deposited on the substrate. The cationic solution includes cationic materials. The cationic materials include polymers, nanoparticles, or any combinations thereof. The method further includes exposing the cationic layer to an anionic solution to produce an anionic layer deposited on the cationic layer to produce a bilayer. The bilayer is the anionic layer and the cationic layer. The anionic solution includes layerable materials.
Abstract:
The present invention provide a polymer functional film having a structure represented by the following Formula (I) and having a water content of 20% by mass to 50% by mass, and a method for producing the same:
Abstract:
An aqueous binder composition, useful for making fiber products, especially fiberglass insulation, comprising an aqueous substantially alkaline (pH of at least 5.0) solution of a polyol and a hydrolyzed (solubilized) copolymer of maleic anhydride and a vinyl aromatic compound, preferably styrene (i.e., a SMA copolymer); the copolymer is solubilized using ammonia, an ammine, a primary alkanolamines (preferably monoethanolamine), a secondary alkanolamine (preferably diethanolamine (DEA)), a tertiary alkanolamine (preferably triethanolamine (TEA)), or a mixture thereof and the binder composition is cured as a consequence of cross-linking, esterification reactions between pendant carboxyls on the solubilized (hydrolyzed) copolymer (SMA) chains and hydroxyl groups of the polyol, including the diethanolamine and/or triethanolamine preferably used in the solubilization of the SMA.
Abstract:
A method of treating a wool material, the method comprising the steps of: (a) contacting the wool material with a cationic surfactant; and (b) contacting the wool material with a nucleophile.
Abstract:
The invention relates to the use of cationically-modified, particle-shaped, hydrophobic polymers as addition agents in rinsing, care, detergent, and cleaning products. The surface of said polymers is cationically modified by means of a coating of cationic polymers and the particle size of said polymers ranges from 10 nm to 100 μm.
Abstract:
The present invention relates to a fiber coated with a water blocking material that includes an essentially water free dispersion comprising a superabsorbent polymer and a dispersing medium. The fibers made according to this invention may be used, for example, as fiber reinforcing material used in the manufacture of cables, and in particular in yarns for fiber optical cables that use optical light wave guides for optical communication transmissions.