Abstract:
A method and apparatus for omni-directional image and 3-dimensional data acquisition with data annotation and dynamic rage extension method is capable of omni-directionally photographing, acquiring 3-dimensional images photographed by cameras having each different exposure amount in connection with the direction of height of an object, extending dynamic range, and generating an geographical information by entering an annotation such as photographing location and time into the photographed images, which can be connected with other geographical information system database. The apparatus includes one or more multi camera module(s) which are stacked and formed multi layers in the direction of height for acquiring 3-dimensional images and extending dynamic range of the 3-dimensional images, wherein each multi camera module includes a plurality of cameras symmetrically arranged with a specific point in a plane.
Abstract:
The present invention provides a method and apparatus for detecting a noise distribution of an image close to a true distribution, and detecting an edge of the image precisely and quickly based on the detected noise distribution without performing a smoothing process for the image, and a computer readable medium processing the method. The method of detecting an edge of an image includes the steps of: detecting a noise distribution of an object image; and detecting an edge of the image based on the detected noise distribution.
Abstract:
The present invention provides a method and apparatus for detecting a noise distribution of an image close to a true distribution, and detecting an edge of the image precisely and quickly based on the detected noise distribution without performing a smoothing process for the image, and a computer readable medium processing the method. The method of detecting an edge of an image includes the steps of: detecting a noise distribution of an object image; and detecting an edge of the image based on the detected noise distribution.
Abstract:
An image encoding and/or decoding apparatus and method are provided. The image encoding apparatus includes: a transform unit removing spatial redundancy by transforming an original image being input; an allowable noise obtaining unit obtaining an allowable noise from the original image; a quantization parameter determination unit determining a quantization parameter by using the allowable noise; a quantization unit generating a quantized coefficient, by quantizing a transform coefficient provided from the transform unit by using the quantization parameter; and an entropy encoding unit entropy encoding the quantized coefficient to remove statistical redundancy.
Abstract:
The invention relates to a camera calibration system and method thereof, which is capable of easily performing camera calibration using a concentric circle pattern. According to the invention, a method of calibrating a camera calibrates the intrinsic parameters of the camera required to measure geometric information of an object using projection invariable characteristics of concentric circles. The method includes the steps of: taking images of the calibration pattern consisting of two or more concentric circles located in the same plane and having different radius at different angles to obtain projected images; calculating the central point of the projected images using a given algorithm, and calculating the principal point and focal point of camera using a nonlinear minimization algorithm based on the central point thus obtained.
Abstract:
An apparatus for providing an omnidirectional stereo image with a single camera includes a first reflector reflecting a first omnidirectional view viewed from a first viewpoint, a second reflector positioned to be coaxial with and separated from the first reflector to reflect a second omnidirectional view viewed from a second viewpoint, a third reflector positioned to be coaxial with the first and second reflectors to reflect the second omnidirectional view reflected by the second reflector, wherein the second and third reflectors have a folded structure satisfying a single viewpoint constraint, and an image sensor positioned to be coaxial with the first, second and third reflectors to capture an omnidirectional stereo image containing the first omnidirectional view reflected by the first reflector and the second omnidirectional view reflected by the third reflector, and output the captured omnidirectional stereo image, wherein shapes of the first, second, and third reflectors and a relative positional relationship between the first, second, third reflectors and the image sensor satisfy the single viewpoint constraint for the first viewpoint and for the second viewpoint. The apparatus provides a high three-dimensional recovery resolution, accomplishes compactness, and facilitates search of corresponding points in two images.
Abstract:
The invention relates to a camera calibration system and method thereof which is capable of easily performing camera calibration using a concentric circle pattern. According to the invention, a method of calibrating a camera calibrates the intrinsic parameters of the camera required to measure geometric information of an object using projection invariable characteristics of concentric circles. The method includes the steps of taking images of the calibration pattern consisting of two or more concentric circles located in the same plane and having different radius at different angles to obtain projected images calculating the central point of the projected images using a given algorithm, and calculating the principal point and focal point of camera using a nonlinear minimization algorithm based on the central point thus obtained.
Abstract:
An automatic parcel volume capture system and an automatic parcel volume capture method are provided. An automatic parcel volume capture system in accordance with an embodiment of the present invention includes stereo image input means, image processing means, feature extraction means, and volume measurement means. The stereo image input means captures images of an object from at least two different angles. The image processing means performs signal-processing on the images captured by the stereo image input means and extracts region of object in the images. The feature extraction means extracts lines and cross points of the lines from results of the image processing means. The volume measurement means generates three dimensional model on the basis of the extracted images and measures volume of the object.
Abstract:
An image encoding and/or decoding apparatus and method are provided. The image encoding apparatus includes: a transform unit removing spatial redundancy by transforming an original image being input; an allowable noise obtaining unit obtaining an allowable noise from the original image; a quantization parameter determination unit determining a quantization parameter by using the allowable noise; a quantization unit generating a quantized coefficient, by quantizing a transform coefficient provided from the transform unit by using the quantization parameter; and an entropy encoding unit entropy encoding the quantized coefficient to remove statistical redundancy.
Abstract:
A method, medium, and system reducing block noise of a digital image, including an encoding/decoding method, medium, and system. The method of reducing block noise of a digital image includes calculating a value of a boundary block that includes a boundary between two neighboring blocks, calculating the visibility of the boundary block by extracting specified characteristic values of the boundary block, classifying the boundary block according to a result of comparing the calculated visibility with a specified threshold value and whether the two neighboring blocks are corner blocks, and performing deblocking of the two neighboring blocks according to a result of classification.